
Systems

GC26-3813-5
File No. 5370-31

OS/VS Linkage Editor
and Loader

VS1 Release 6
VS2 Release 3.7

Includes Selectable Unit:
OS!VS1 Subsystem Attachment Support (5741-606)

Includes Selectable Unit:
OS/VSl Subsystem Attachment Support (5741-606)

Sixth Edition (August 1978)

This edition replaces the previous edition (numbered GC26-3813-4) and incorporates
technical newsletter GN26-0827 and System Supplement Newsletter GC26-3888 and makes
them obsolete.

This edition applies to both Release 6 of OS/VSl and to Release 3.7 of OS/VS2, and to
any subsequent releases of either system unless otherwise indicated in new editions or
technical newsletters.

Significant system changes are summarized under "OS/VSl Summary of Amendments" or
"OS/VS2 Summary of Amendments" following the list of figures. In addition,
miscellaneous editorial and technical changes have been made throughout the publication.
Each technical change is marked by a vertical line to the left of the change.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC2~1, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, P. O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
any of the information you supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1972, 1973, 1974, 1975, 1978

PREFACE

This publication provides application programmers with the information
necessary to use the OS /VS Linkage Editor and Loader to prepare the output
of a language translator for execution. Additional information on the
operation and use of the linkage editor and loader is directed to the system
programmer responsible for installing and maintaining the operating system.

The "Introduction" briefly defines the functions of the linkage editor and
loader and gives recommendations for the use of each. Part 1 describes the
linkage editor, and should be read before Part 2, which describes the loader.

The linkage editor combines and edits modules to produce a single module
that can be brought into storage by program fetch for execution. It operates
as a processing program rather than as part of the control program. The
linkage editor provides several processing facilities that are either performed
automatically or invoked in response to control statements prepared by the
programmer.

Part 1, which consists of six chapters and three appendixes, briefly describes
the processing facilities and operation of the linkage editor. The introduction
also defines linkage editor terms in reference to the source language
statements that cause them to be created.

The six chapters describe the input to the linkage editor, the output from the
linkage editor, module editing functions, design and specification of overlay
programs, the job control language necessary to run a linkage editor job step,
and the linkage editor control statements. The last two chapters are
summaries of reference information to be used after the general information
in the first four chapters is learned .. The appendixes to Part 1 contain sample
programs, a description of the linkage editor programs, and information on
the invocation of the linkage editor.

The loader program combines the basic editing and loading functions of the
linkage editor and program fetch in one job step. It is designed for
high-performance loading of modules that do not require the special
processing facilities of the linkage editor and fetch, such as overlay. The
loader does not produce load modules for program libraries.

Part 2 of this publication describes the loader. The introduction to this part
describes the functional characteristics of the loader, along with its
compatibility with the linkage editor and restrictions on its use. The chapter
on using the loader describes the job control language statements and
invocation procedures for the loader, as well as loader input and output, and
user program data. The appendixes to Part 2 contain sample input, a
description of loader return codes, and storage considerations. All of these
items are discussed in relation to the capabilities of the linkage editor;
therefore, the reader must be familiar with Part 1 of this publication.

The diagnostic messages issued by both the linkage editor and the loader
program are described in OS/VS Message Library: Linkage Editor and
Loader Messages, GC38~ 1 007. The description of each message includes an
explanation, a system action, and a problem determination action to be taken.

Preface 3

Time Sharing Option (TSO)

Additional Publications

The following publication is needed to use the linkage editor or loader under
the Time Sharing Option (TSO):

OS/VS2 TSO Terminal User's Guide, GC28-0645

This manual contains procedures for invoking the linkage editor or loader
from the terminal and gives a brief description of the options that can be
specified under TSO.

Further information on TSO can be found in the following two manuals:

• OS/VS2 System Programming Library: TSO, GC28-0629

• OS/VS2 TSO Command Language Reference, GC28-0646

Within the text, references are made to the following pUblications:

I
· OS/VSl Data Management Services Guide, GC26-3874

• OS/VS2 MVS Data Management Services Guide, GC26-3875

• OS/VSl Planning and Use Guide, GC24-5090

• OS/VS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681

• OS/VS2 Planning Guide for Release 2, GC28-0667

• OS/VSl Service Aids, GC28-0665

• OS/VS2 System Programming Library: Service Aids, GC28-0674

• OS/VSl Storage Estimates, GC24-5094

• OS/VS2 System Programming Library: Storage Estimates, GC28-0604

• OS/VSl Supervisor Services and Macro Instructions, GC24-5103

• OS/VS2 Supervisor Services and Macro Instructions, GC28-0683

• OS/VSl System Data Areas, SY28-0605

• OS/VS2 Data Areas, SYB8-0606

• OS/VSl System Generation Reference, GC26-3791

• OS/VS2 System Programming Library: System Generation Reference,
GC26-3792

I : ~~~~~; :~~ti~:~~~~-3902
• OS/VS Message Library: VSl System Codes, GC38-1003

• OS/VS Message Library: VS2 System Codes, GC38-1008

• OS/VS Message Library: Routing and Descriptor Codes, GC38-1004

• OS/VS Message Library: Linkage Editor and Loader Messages,
GC38-1007

• OS/VSl JCL Reference, GC24-5099

• OS/VS2 JCL, GC28-0692

4 OS/VS Linkage Editor and Loader

CONTENTS

Preface.. 3
Time Sharing Option (TSO) 4
Additional Publications... 4

Figures... 11

OS/VSl Summary of Amendments... 13

OS/VS2 Summary of Amendments 15

Introduction... 17

Part 1. Linkage Editor
Object and Load Modules

External Symbol Dictionary .. .
Text

19
21
21
22

Relocation Dictionary.. 22
End Indication ... · 23

Linkage Editor Processing.. 23
Input and Output Sources... 23
Load Module Creation 23

Assigning Addresses.. 24
Resolving External References..... 25

Functions of the Linkage Editor... 25
Links Modules.. 26
Edits Modules 27
Aligns Control Sections or Common Areas on Page Boundaries 28
Accepts Additional Input Sources................. 28
Reserves Storage ... ;................ 29
Processes Pseudo Registers.. 29
Creates Overlay Programs... 29
Creates Multiple Load Modules... 30
Provides Special Processing and Diagnostic Output Options 30
Assigns Load Module Attributes 30
Allocates User-Specified Virtual Storage Areas 30
Stores System Status Index Information 30
Traces Processing History.. 30
Lengthens Control Sections or Named Common Sections 31
Assigns an Authorization Code to Output Load Modules................. 31

Relationship to the Operating System .. 32
Time Sharing Option (TSO) 32

Input to the Linkage Editor.. 33
Primary Input Data Set.... 33

Object Modules 33
From Cards.. 34
As a Member of a Partitioned Data Set... 34
Passed from a Previous Job Step ... 34
Created in a Separate Job .. 36

Control Statements... 36
Object Modules and Control Statements... 36

Control Statements in the Input Stream .. 36
Control Statements in a Separate Data Set. 37

Automatic Call Library... 37
SYSLIB DD Statement ... 38

Contents 5

System Call Library........ 38
Private Call Libraries...... 39
Concatenation of Call Libraries =............................ 39

Library Control Statement............... 39
Additional Call Libraries.............................. 40
Restricted No-Call Function .. 40
Never-Call Function .. 41

NCAL Option .. 41
Included Data Sets.................................. .•... 41

Including Sequential Data Sets................... 43
Including Library Members...................... 43
Including Concatenated Data Sets 44

Output from the Linkage Editor.. 45
Output Load Module 45

Output Module Library......... 45
Member Name...................................... 46
Alias Names... 47

Entry Point............................ 47
Authorization Code................................ 48

Reserving Storage in the Output Load Module 49
Processing Pseudo Registers ... 49
Multiple Load Module Processing 49

Diagnostic Output............................... 50
Diagnostic Messages................ 50

Module Disposition Messages............. 50
Error/Warning Messages........... 51
Sample Diagnostic Output 53

Optional Output 53
Control Statement Listing........................ 53
Module Map... 53
Cross-Reference Table .. 54

Module Editing 57
Editing Conventions .. 57

Changing External Symbols.. 58
Replacing Control Sections........................... 59

Automatic Replacement......................... 60
Example 1 60
Example 2 60

REPLACE Statement 62
Deleting a Control Section or Entry Name... 63
Ordering Control Sections or Named Common Areas 64
Aligning Control Sections or Named Common Areas on Page Boundaries 66

Overlay Programs.. 69
Design of an Overlay Program..... 69

Single Region Overlay Program......... 70
Control· Section Dependency............... 70
Segment Dependency.............. 72
Length of an Overlay Program.. 73
Segment Origin .. 74
Communication Between Segments... 74
Overlay Process ... 76

Multiple Region Overlay Program.......................... 78
Specification of an Overlay Program.. 80

Segment Origin... 81

6' OS/VS Linkage Editor and Loader

Region Origin
Positioning Control Sections .. .

Using Object Decks
Using INCLUDE Statements
Using INSERT Statements .. .

Special Options
OVL Y Option .. .
LET Option
XCAL Option

Special Considerations .. .
Common Areas
Storage Requirements .. .

82
83
83
84
84
86
86
86
87
87
87
89

Overlay Communication 90
CALL Statement or CALL Macro Instruction................................... 91
Branch Instruction
Segment Load (SEGLD) Macro Instruction
Segment Wait (SEGWT) Macro Instruction

91
92
93

Job Control Language Summary..... 95
EXEC Statement-Introduction ... 95
EXEC Statement-Job Step Options.. 95

Module Attributes............... 96
Downward Compatible Attribute 96
Hierarchy Format Attribute.. 96
Scatter Format Attribute 97
Not Editable Attribute.......... 98
Only Loadable Attribute............... 98
Overlay Attribute 98
Reusability Attributes........ 99
Refreshable Attribute "'r'" 100
Test Attribute................................ 100
Page Boundary Attribute.............. 100
Authorization Code..................... 101
Default Attributes... 101
Incompatible Attributes.......................... 101

Special Processing Options................................... 101
Exclusive Call Option..... 101
Let Execute Option.. 102
No Automatic Library Call Option ... 102

Space Allocation Options.. 102
SIZE Option .. 102
DCBS Option.. 108

Output Options.................................. 109
Control Statement Listing Option.... 109
Module Map Option.. 109
Cross-Reference Table Option.. ... 109
Alternate Output (SYSTERM) Option .. 109

Incompatible Job Step Options ... 110
EXEC Statement-Region Parameter .. III
EXEC Statement-Return Code .. III
DO Statements 112
Linkage Editor DO Statements.......... 113

SYSLIN DO Statement 114
SYSLffi DO Statement 114
SYSUTI DO Statement .. 115
SYSPRINT DO Statement...... 115

Contents 7

SYSLMOD DD Statement... 115
SYSTERM DD Statement 116

Additional DD Statements 117
Cataloged Procedures .• ~ .. 118

Linkage Editor Cataloged Procedures............... 118
Procedure LKED , ~....................... 118
Procedure LKEDG 120

Overriding Cataloged Procedures... 121
Overriding the EXEC Statement... 121
Overriding DD Statements ... 121

Adding DD Statements................. 122

Linkage Editor Control Statement Summary.. 123
General Format.............. 123
Format Conventions 123
Placement Information............ 124
ALIAS Statement 125
CHANGE Statement ... 126
ENTRY Statement ... 128
EXPAND Statement : ... 129
IDENTIFY Statement.. 130
INCLUDE Statement .. 132
INSERT Statement .. 133
LIBRARY Statement ... 135
NAME Statement .. 137
ORDER Statement .. 138
OVERLAY Statement ... 140
PAGE Statement ... 142
REPLACE Statement .. 144
SETCODE Statement. 146
SETSSI Statement... 147

Appendix A. Sample Programs ... 149
Sample Program COBFORT .. 149

Job Control Language ... 149
Linkage Editor Output ... 150

Sample Program RPLACJOB ... 151
Job Control Language ... 152
Linkage Editor Control Statements 152
Linkage Editor Output............................. 153

Sample Program REGNOVL Y ... 153
Job Control Language 154
Linkage Editor Control Statements ... 155
Linkage Editor Output.................................. 156

Sample Program PARTDS .. 159
Job Control Language ... 159
Linkage Editor Control Statements...................... 160
Linkage Editor Output ... 160

Appendix B: Invoking the Linkage Editor 161

Appendix C: Storage Requirements and Capacities............. 163
Capacities................. 163
Intermediate Data Set.. 165
Linkage Editor Storage Requirements 165

8 OS/VS Linkage Editor and Loader

Part 1. wader .. 167
Functional Characteristics 167
Compatibility and Restrictions. 169

Time Sharing Option (TSO) ... 169
Processing Object Modules in Virtual Storage 170
Loaded Program Restrictions 170

Using The wader ... 171
Input for the Loader..... 171

EXEC Statement............................... 171
DD Statements 173

SYSLIN DD Statement... 174
SYSLIB DD Statement 174
SYSLOUT DD Statement ... ,175
SYSTERM DD Statement .. ~....... 175

Loaded Program Data 175
Invoking the Loader. 176
Loader Output ... 180

Appendix D: Sample Input for the wader .. 183

Appendix E: Loader Return Codes 185

Appendix F: Storage Considerations ... 187

Appendix G: Load Module Format ... 189

Appendix H: SIZE and REGION Parameter Guidelines ,................. 191

Glossary 193

Index.. 195

Contents 9

FIGURES

Figure 1. Preparing a Source Module for Execution 19
Figure 2. Preparing A Source Module for Execution and Executing the

Load Module 20
Figure 3. External Names and External References................................ 20
Figure 4. Use of the External Symbol Dictionary 22
Figure 5. Input, Intermediate, and Output Sources

for the Linkage Editor .. 24
Figure 6. A Load Module Produced by the Linkage Editor 25
Figure 7. Linkage Editor Processing-Module Linkage 27
Figure 8. Linkage Editor Processing-Module Editing........ 28
Figure 9. Linkage Editor Processing-Additional Input Sources............ 29
Figure 10. System Automatic Call Libraries ... 38
Figure 11. Processing of One INCLUDE

Control Statement.... 42
Figure 12. Processing of More than One INCLUDE

Control Statement........................... .. 42
Figure 13. Diagnostic Messages Issued by the Linkage Editor 53
Figure 14. Module Map.... 54
Figure 15. Cross-Reference Table... 55
Figure 16. Editing a Module.. 57
Figure 17. Changing an External Reference and an Entry Point 59
Figure 18. Automatic Replacement of Control Sections 61
Figure 19. Replacing a Control Section with the REPLACE Control

Statement.................... ... 63
Figure 20. Deleting a Control Section.. 64
Figure 21. Ordering Control Sections................................ 65
Figure 22. Aligning Control Sections on Page Boundaries........................ 67
Figure 23. Control S~ction Dependencies........ 71
Figure 24. Single-Region Overlay Tree Structure...................................... 72
Figure 25. Length of an Overlay Module .. 73
Figure 26. Segment Origin and Use of Storage ... 74
Figure 27. Inclusive and Exclusive Segments .. 75
Figure 28. Inclusive and Exclusive References.. 76
Figure 29. Location of Segment and Entry Tables in

an Overlay Module.. 77
Figure 30. Control Sections Used by Several Paths 79
Figure 31. Overlay Tree for Multiple-Region Program 80
Figure 32. Symbolic Segment Origin in Single-Region Program 82
Figure 33. Symbolic Segment and Region Origin

in Multiple-Region Program... 83
Figure 34. Common Areas before Processing.............. 88
Figure 35. Common Areas after Processing.. 89
Figure 36. Branch Sequences for Overlay Programs 92
Figure 37. Use of the SEGLD Macro Instruction 93
Figure 38. Use of the SEGWT Macro Instruction..................................... 93
Figure 39. SYSUT1 and SYSLMOD Device Types and Their Maximum

Record Sizes................. 104
Figure 40. Load Module Buffer Area and SYSLMOD and

SYSUT1 Record Sizes.. 105
Figure 41. Incompatible Job Step Options for the Linkage Editor 110
Figure 42. Linkage Editor Return Codes .. III
Figure 43. Linkage Editor ddnames .. 114

Figures 11

12 OS/VSLinkage Editor and Loader

Figure 44. DCB Requirements for Object Module and Control Statement
Input.. 114

Figure 45. DCB Requirements for SYSPRINT I 15
Figure 46. DCB Requirements for Additional Input Data Sets I 17
Figure 47. Statements in the LKED Cataloged Procedure 118
Figure 48. Statements in the LKEDG Cataloged Procedure 120
Figure 49. Overlay Structure for INSERT Statement Example 134
Figure 50. Output Load Module for ORDER Statement Example 139
Figure 51. Overlay Structure for OVERLAY Statement Example 141
Figure 52. Output Load Module for PAGE Statement Example 143
Figure 53. Linkage Editor Output for Sample Program COBFORT 150
Figure 54. Linkage Editor Output for Job Step that Created SUBONE.... 151
Figure 55. Linkage Editor Output for Sample Program RPLACJOB 153
Figure 56. Overlay Tree for Multiple-Region Sample

Program REGNOVL Y ... 154
Figure 57. Linkage Editor Output for Sample Program REGNOVL Y 156
Figure 58. Input Statements for IEBUPDTE Utility Program 159
Figure 59. Linkage Editor Capacities for Minimal SIZE

Values (64K, 6K).. 163
Figure 60. Loader Processing-SYSLIB Resolution.. 168
Figure 61. Loader Processing-Link Pack Area and

SYSLIB Resolution............................ 168
Figure 62. Loader Processing-Automatic Editing.................................... 169
Figure 63. Input Deck for the Loader-Basic Format 171
Figure 64. Loader and Loaded Program Data in VSl or

VS2 Input Stream.. 176
Figure 65. Using the LINK Macro Instruction to Refer to the Loader 177
Figure 66. Using the LOAD and CALL Macro Instructions to Refer to

HEWLOADR (Loading Without Identification) 179
Figure 67. Using the LOAD and CALL Macro Instructions to Refer to

HEWLOAD (Loading With Identification) 180
Figure 68. Module Map Format Example .. 181
Figure 69. Input Deck for a Load Job .. 183
Figure 70. Input Deck for a Compile-Load Job ... 183
Figure 71. Input Deck for Compilation and Loading

of the Three Modules........... 184
Figure 72. Return Codes .. 185
Figure 73. Virtual Storage Requirements ... 188
Figure 74. Load Module Format .. 189

OS/VSl ~UMMARY OF ~NDMENTS

Release 6

Release 5

• This revision incorporates information formerly contained in
technical newsletter GN26-0827 and System Supplement Newsletter
GC26-3888 (SU 5741':'606). It also includes miscellaneous technical and
editorial changes.

• The appropriate figures have been updated to include specifications for the
IBM 3350 Direct Access Storage and the mM 3344 Direct Access Storage
Device.

OS/VSl Summary of Amendments J3

OS/VS2 SUMMARY OF AMENDMENTS

Release 3.7

Release 2

Release 1

• OS/VS2 Release 3.7 supports the mM 3350 and 3344 Direct Access
Storage Devices. Miscellaneous technical and editorial changes have been
made to this publication ..

• The appropriate figures have been updated to include specifications for the
3330-1 and 3340 disk storage devices.

• The format for the load modules produced by the linkage editor has been
included in this edition. See Appendix G.

• The "SIZE option" has been rewritten to make it easier for the user to
determine the correct values for the option. Appendix H is a summary of
this section.

• A more efficient EXEC statement has been added for use in the LKEDG
procedure when the programmer wishes to specify the LET parameter in
the LKED step. This change applies to both OS/VSl and OS/VS2.

OS/VS2 Summary of Amendments J 5

INTRODUCTION

The linkage editor and the loader processing programs prepare the output of
language translators for execution. The linkage editor prepares a load module
that is to be brought into storage for execution by program fetch. The loader
prepares the executable program in storage and passes control to it directly.

The linkage editor provides several processing facilities such as creating
overlay programs, and aiding program modification. (The linkage editor is
also used to build and edit system libraries.) The loader provides high
performance loading of programs that do not require the special processing
facilities of the linkage editor.

Use of the linkage editor is recommended in the following cases:

• If the program requires linkage editor services in addition to the MAP,
LET, NCAL, and SIZE options

• If the program uses linkage editor control statements such as INCLUDE,
NAME, OVERLAY

• If a load module is to be produced for a program library

Use of the loader is recommended if the program only requires the use of the
following linkage editor options: MAP, LET, NCAL, and SIZE. Because of
its fewer options and because it can process a job in one job step, the loader
reduces editing and loading time by about one-half.

Linkage editor processing is performed in a link edit step. The linkage editor
can be used for compile-link edit-go, compile-link edit, link edit, and link
edit-go jobs. Loader processing is performed in a load step, which is
equivalent to the link edit-go steps. The loader can be used for compile-load
and load jobs.

Details of how each language interfaces with the linkage editor can be found
in the publication(s) describing that language.

Introduction 17

PART 1. LINKAGE EDITOR

Source
Module

Linkage editor processing is a necessary step that follows the source program
assembly or compilation of any problem program. The linkage editor is a
processing program and a service program used in association with the
language translators.

Every problem program is designed to fulfill a particular purpose. To achieve
that purpose, the program can generally be divided into logical units that
perform specific functions. A logical unit of coding that performs a function,
or several related functions, is a module. Ordinarily, separate functions should
be programmed into separate modules, a process called modular
programming. Each module can be written in the symbolic language that best
suits the function to be performed. (The symbolic languages are Assembler,
ALGOL, COBOL, FORTRAN, PL/I, and RPG.)

Each module is separately assembled or compiled by one of the language
translators. The input to a language translator is a source module; the output
from a language translator is an object module. Before an object module can
be executed, it must be processed by the linkage editor. The output of the
linkage editor is a load module (Figure 1).

An object module is in relocatable format with unexecutable machine code. A
load module (see Appendix G) is also relocatable, but with executable
machine code. A load module is in a format that can be loaded into virtual
storage and relocated by program fetch (Figure 2).

Any module is composed of one or more control sections. A control section is
a unit of coding (instructions and data) that is, in itself, an entity. All
elements of a control section are loaded and executed in a constant
relationship to one another. A control section is, therefore, the smallest
separately relocatable unit of a program.

Each module in the input to the linkage editor may contain symbolic
references to control sections in other modules; such references are called
external references. These references are made by means of address constants
(adcons). The symbol referred to by an external reference must be either the
name of a control section or the name of an entry point in a control section.
Control section names and entry names are called external names. By
matching an external reference with an external name, the linkage editor
resolves references between modules. External references and external names
are called external symbols (Figure 3). An external symbol is one that is
defined in one module and can be referred to in another.

Object
Module

Figure J. Preparing a Source Module for Execution

Part 1. Linkage Editor 19

Figure 2. . Preparing a Source Module for Execution and Executing the Load Module

External
Symbols

. Input
Module A

./ ,/
CSECT Al

ENTRY All

CALL BI

External Names:

Control Section

Al
BI

Entry Name

All

External References:

From Al to BI
From BI to All

Input
Module B

./
CSECT BI

CALL All

Figure 3. External Names and External References

20 OS/VS Linkage Editor and Loader

,/

/
-----.

Load

Program
Fetch

l
Execution

Output Load
Module AD

./ ./
CSECT Al

ENTRY All

CALL BI

V
CSECTBI

CALL All

Object and Load Modules

External Symbol Dictionary

Object modules and load modules have the same basic logical structure. Each
consists of:

• Control dictionaries, containing the information necessary to resolve
symbolic cross-references between control sections of different modules,
and to relocate address constants. Control dictionary entries are generated
when external symbols, address constants, or control sections are
processed by a language translator. Each language translator usually
produces two kinds of control dictionaries: an external symbol dictionary
(ESD) and a relocation dictionary (RLD).

• Text, containing the instructions and data of the program.

• An end-of-module indication: an END statement in an object module, an
end-of-module indicator in a load module.

Each control dictionary, text, and end indication is described in greater detail
in the following text.

Both object modules and load modules can contain data used by the linkage
editor to create CSECT Identification (IDR) records. If the language
translator creating an object module supports CSECT Identification, the input
object module can contain translator data for Identification records on the
END statement. Input load modules differ from object modules in the type of
data they supply. Input load modules can also provide HMASPZAP data,
linkage editor data, and user data to the Identification records that are built
during linkage editor processing. During the link edit step, the optional
IDENTIFY control statement is used to supply the optional user data for the
CSECT Identification records.

The external symbol dictionary (ESD) contains one entry for each external
symbol defined or referred to within a module. The dictionary contains an
entry for each external reference, pseudo register (external dummy section),
entry name, named or unnamed control section, and blank or named common
area. An entry name, pseudo register, or named control section can be
referred to by any control section or separately processed module; an
unnamed control section cannot.

Each entry identifies a symbol, or a symbol reference, and gives its location, if
known, within the module. Each entry in the external symbol dictionary is
classified as one of the following:

• External reference-a symbol that is defined as an external name in
another separately processed module, but is referred to in the module being
processed. The external symbol dictionary entry specifies the symbol; the
location is unknown.

• Weak external reference-a special type of external reference that is not
to be resolved by automatic library call unless an ordinary external
reference to the same symbol is found. The external symbol dictionary
entry specifies the symbol; the location is unknown.

• Entry name-a name with a control section that defines an entry point.
The external symbol dictionary entry specifies the symbol and its location,
and identifies the control section to which it belongs.

Part 1. Linkage Editor 21

Text

Relocation Dictionary

L

Input
Module A

ESD

CSECT Al

ENTRY All

CALL Bl

I
/ ,

/ /,
1/

l/~.
\

i..;'

\
\
\

. Symbol·

Al

All

B1

• Control section name-the symbolic name of a control section .. The
external symbol dictionary entry specifies the symbol, the l~.mgth of the
control section, and its location. In this case, the location represents the
origin of the control section, which is the first byte of the control section.

• B lank or named common area-a control section used to reserve a virtual
storage area that can be referred to by other modules. The reserved storage
area can be used, for example, as a communications region within a
program or to hold data supplied at execution time. The external symbol
dictionary entry specifies the name, if there is one, and the length of the
area. If there is no name, the name field contains blanks.

• Private code-an unnamed control, section. The external symbol dictionary
entry specifies the length of the control section and the origin. The name
field contains blanks.

• Pseudo register-a special facility (corresponding to the external dummy
section feature of Assembler F) that can be used to write re-enterable
programs. A pseudo register is a dynamically obtained location in virtual
storage that can be used as a pointer to dynamically acquired storage; that
is, the space for such areas is not reserved in the load module but is
acquired during execution. The external symbol dictionary contains the
name, length, alignment, and displacement of the pseudo register.

When processing input modules, the linkage editor resolves references
between modules by matching the referenced symbols to defined symbols. To
do this, the linkage editor searches for the external symbol definition in the
external symbol dictionary of each input module. As shown in Figure 4, the
linkage editor matches the external reference to B I by locating the definition
for BI in the external symbol dictionary of Module B. In the same way, it
matches the external reference to All by locating the definition for All in
the external symbol dictionary of Module A.

The text contains the instructions and data of the module.

The relocation dictionary (RLD) contains one entry for each relocatable
address constant that must be modified before a module is executed. An entry
identifies an address constant by indicating both its location within a control
section and the external symbol whose value must be used to compute the

ESD for A

Type Location ESD for B

Control Known Symbol Type
Section

Control Name B1
Section

Entry Name Known fir' Name
Unknown ~, External

External Reference All
Reference

Location

Known

Unknown

~
\
\
\
\
\

/
/

/

I

'"

Input
ModuleB

ESD

CSECT Bl

CALL All

./

i/

i/

~

Figure 4. Use of the External Symbol Dictionary

22 OS/VS Linkage Editor and Loader

End Indication

value of the address constant. (The external symbol is defined in an external
symbol dictionary entry in another control section or module.)

The linkage editor uses the relocation dictionary whenever it processes a
module to adjust the address constants for references to other control sections
and modules. This dictionary is also used to adjust these address constants
again after program fetch reads an output load module from a library and
loads it into virtual storage for execution.

The end of a load module is marked by an end-oJ-module indicator (EOM).
The EOM cannot, like the assembler END instruction, specify an entry point.
Therefore, whenever a load module is reprocessed by the linkage editor, a
main entry point should be specified on an ENTRY statement. If one is not
specified, the linkage editor will assign the first byte of the first control
section encountered as the entry point.

Linkage Editor Processing

Input and Output Sources

Load Module Creation

This section discusses the input and output sources of the linkage editor, and
the way in which the linkage editor produces a load module.

The linkage editor can receive its input from several sources, as follows:

• The primary input, which can contain only object modules and linkage
editor control statements (called control statements in the following text).

• Additional user-specified input, which can contain either object modules
and control statements, or load modules. This input is either specified by
the user as input, or incorporated automatically by the linkage editor from
a call library .

During processing, the linkage editor generates intermediate data.
Intermediate data is placed on a direct-access storage device when virtual
storage allocated for input data is exhausted.

Output of the linkage editor is of two types:

• A load module, which is always placed in a library (a partitioned data set)
as a named member.

• Diagnostic output, which is produced as a sequential data set.

Figure 5 shows the input, intermediate, and output sources for the linkage
editor program.

In processing object and load modules, the linkage editor assigns consecutive
relative addresses to all control sections and resolves all references between
control sections. Object modules produced by several different language
translators can be used to form one load module.

An output load module is composed of all input object modules and input
load modules processed by the linkage editor. The control dictionaries of an
output module are, therefore, a composite of all the control dictionaries in the
linkage editor input. The control dictionaries of a load module are called the

Part 1. Linkage Editor 23

Assigning Addresses

24 OS!VS Linkage Editor and Loader

composite external symbol dictionary (CESD) and the relocation dictionary
(RLD). The load module also contains all of the text from each input module,
and one end-of-module indicator (Figure 6.) See Appendix G for the format
of a load module.

Primary
Input

User~

Specified
Input

Figure 5. Input, Intermediate, and Output Sources for the Linkage Editor

Each module to be processed by the linkage editor has an origin that was
assigned during assembly, compilation, or a previous execution of the linkage
editor. When several modules, each with an independently assigned origin, are
to be processed by the linkage editor, the sequence of the addresses is
unpredictable; two input modules may even have the same origin.

Each input module can be made up of one or more control sections. To
produce an executable output load module, the linkage editor assigns relative
virtual storage addresses to each control section by assigning an origin to the
first control section encountered and then assigning addresses, relative to that
origin, to all other control sections to be included in the output load module.
The value assigned as the origin of the control section is used to relocate each
address dependent item in the control section.

Although the addresses in a load module are consecutive, they are relative to
zero. When a load module is to be executed, program fetch prepares the
module for execution by loading it at a specific virtual storage location. The
addresses in the module are then increased by this base address. Each address
constant must also be readjusted, another function of program fetch.

Resolving External References

Module A

TXT

~ RLD

END

ModuleB

/ ESD

TXT

RLD

END

Figure 6. A Load Module Produced by the Linkage Editor

...

/'

Output Load
Module AB

CESD

TXT

RLD

EOM

/"

./

./

/'
l/

The linkage editor also resolves external references in the input modules.
Cross references between control sections in different modules are symbolic.
They must be resolved relative to the addresses assigned to the load module.
The linkage editor calculates the new address of each relocatable expression
in a control section and determines the assigned origin of the item to which it
refers.

Functions of the Linkage Editor
Linkage editor input may consist of a combination of object modules, load
modules, and control statements. The primary function of the linkage editor is
to combine these modules, in accordance with the requirements stated on
control statements, into a single output load module. Although this linking or
combining of modules is its primary function, the linkage editor also:

• Edits modules by replacing, deleting, rearranging, and ordering control
sections as directed by control statements.

• Aligns control sections and named common areas on 2K or 4K page
boundaries as directed by control statements.

• Accepts additional input modules from data sets other than the primary
input data set, either automatically, or upon request.

• Reserves storage for the common control sections generated by Assembler
and FORTRAN language translators, and static external areas generated
by PL/I.

• Computes total length and assigns displacements for all pseudo registers
(external dummy sections).

• Creates overlay programs in a structure defined by control statements.

Part t. Linkage Editor 25

Links Modules

26 OS/VS Linkage Editor and Loader

• Creates multiple output load modules as directed by control statements.

• Provides special processing and diagnostic output options.

• Assigns module attributes that describe the structure, content, and logical
format of the output load module.

• Allocates storage areas for linkage editor processing as specified by the
programmer.

• Stores system status index information in the directory of the output
module library (systems personnel only).

• Traces the processing history of a program.

• Allows the user to lengthen a control section or named common section
without changing source code, reassembling, or recompliling.

• Allows the user to assign an authorization code to a load module that (a)
makes it a restricted resouce and (b) enables it to pass control to other
restricted resources.

Each of the linkage editor functions is described briefly in the following
paragraphs.

Processing by the linkage editor makes it possible for the programmer to
divide his program into several modules, each containing one or more control
sections. The modules can be separately assembled or compiled. The linkage
editor combines these modules into one output load module (Figure 7) with
contiguous storage addresses. During processing by the linkage editor,
references between modules within the input are resolved. The output module
is placed in a library (partitioned data set).

Figure 7. Linkage Editor Processing-Module Linkage

Edits Modules

Program modification is made easier by the editing functions of the linkage
editor. When the functions of a program are changed, the programmer
modifies, then compiles and link edits again only the affected control sections
instead of the entire source module.

Control sections can be replaced, renamed, deleted, moved, or ordered as
directed by control statements. Control sections can also be automatically
replaced by the linkage editor. External symbols can be changed or deleted as
directed by control statements.

Figure 8 illustrates the module editing function of the linkage editor.

Part 1. Linkage Editor 27

Figure 8. Linkage Editor Processing-Module Editing

Aligns Control Sections or Common Areas on Page Boundaries

Accepts Additional Input Sources

28 OS/VS Linkage Editor and Loader

Control sections or named common areas in the output load module can be
aligned on either 2K or 4K page boundaries. Alignment on page boundaries
enables the programmer to use real storage more efficiently and appreciably
reduce the paging rate for the job.

Standard subroutines can be included in the output module, thus reducing the
work in coding programs. The programmer can specify that a subroutine be
included at a particular time during the processing of his program by using a
control statement. When the linkage editor processes a program that contains
this statement, the module containing the subroutine is retrived from the
indicated input source, and made a part of the output module (Figure 9).

Symbols that are still undefined after all input modules have been processed
cause the automatic library call mechanism to search for modules that will
resolve these references. When a module name is found that matches the
unresolved symbol, the module is processed by the linkage editor and also
becomes part of the output module (Figure 9).

Note: The level F linkage editor distinguishes a special type of external
reference- the weak external reference. An unresolved weak external
reference does not cause the linkage editor to use the automatic library call
mechanism. Instead, the reference is left unresolved, and the load module is
marked as executable.

Reserves Storage

Processes Pseudo Registers

Creates Overlay Programs

Primary Input:

Control
Statements

Additional Input:

Object
Module E

Figure 9. Linkage Editor Processing-Additional Input Sources

Load
Module

A
B
C
D
E
F
G

The linkage editor processes common control sections generated by the
FORTRAN and Assember language translators. The static external storage
areas generated by the PL/I compiler are processed in the same way. The
common areas are collected by the linkage editor, and a reserved virtual
storage area is provided within the output module.

Pseudo registers, like the external dummy sections of Assembler F, aid in
generating re-enterable code. The linkage editor processes pseudo registers by
accumulating the total length of storage required for all pseudo registers and
recording the displacement of each. During execution, the program
dynamically acquires the necessary storage.

To minimize virtual storage requirements, the programmer can organize his
program into an overlay structure by dividing it into segments according to
the functional relationships of the control sections. Two or more segments
that need not be in virtual storage at the same time can be assigned the same
relative virtual storage addresses, and can be loaded at different times.

The programmer uses control statements to specify the relationship of
segments within the overlay structure. The segments of the load module are

Part 1. Linkage Editor 29

Creates Multiple Load Modules

placed in a library so that the control program can load them.separately when
the load module is executed.

The linkage editor can also process its input to form more than one load
module within a single job step. Each load module is placed in the library
under a unique member name, as specified by a control statement.

Provides Special Processing and Diagnostic Output Options

Assigns Load Module Attributes

The programmer can specify special processing options that negate automatic
library call or the effect of minor errors. In addition, the link~itor can
produce a module map or cross-reference table that shows the arrangement of
control sections in the output module and indicates how they communicate
with one another. A list of the control statements processed can also be
produced.

Throughout processing, errors and possible error conditions are logged.
Serious errors cause the linkage editor to mark the output module not
executable. Additional diagnostic data is automatically logged by the linkage
editor. The data indicates the disposition of the load module in the output
module library.

When the linkage editor generates a load module, it places an entry for the
module in the directory of the library. This entry contains attributes that
describe the structure, content, and logical format of the load module. The
control program uses these attributes to determine how a module is to be
loaded, what it contains, if it is executable, whether it is executable more than
once without reloading, and if it can be executed by concurrent tasks. Some
module attributes can be specified by the programmer; others are specified by
the linkage editor as a result of information gathered during processing.

Allocates User-Specified Virtual Storage Areas

The programmer can specify the total amount of virtual storage to be made
available to the linkage editor, the amount to be used for the load module
buffer, and the buffer for the output load module.

Stores System Status Index Information

Traces Processing History

:300S/VS Linkage Editor and Loader

The following information is intended for systems personnel responsible for
maintaining IBM-supplied load modules. It is not generally applicable to
non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied load modules ilre
used to store system status index information. This information, which is used
for maintenance of the modules, is placed in the directory with a control
statement.

Tracing the processing history of a program is simplified by the CSECT
Identification (IDR) records created and maintained by the linkage editor. A
CSECT Identification record can contain data that describes:

• The language translator, its level, and the translation date for each control
section.

• The most recent processing by the linkage editor.

• Any modification made to the executable code of any control section.

Optionally, user-supplied data associated with the executable code of a
control section can also be recorded.

Lengthens Control Sections or Named Common Sections

The user can lengthen control sections or named common sections of a
program to add patch space without changing the source code, reassembling,
or recompiling.

Added space, consisting of binary zeros, is put at the end of a specified
control section by using the EXPAND control statement (see the "Control
Statement Summary" section). Space cannot be added to a private code or
blank common section.

Assigns an Authorization Code to Output Load Modules

The authorized program facility (APF) limits the use of sensitive system and
(optionally) user services and resources to authorized system and user
programs. Authorization is defined as accesss to those services and resources.
The services and resources to which access is limited are described in the
following publications: for VSl, OS/VSl Planning and Use Guide; for VS2,
OS/VS2 System Programming Library: Initialization and Tuning Guide.

Programs are authorized at the job-step level. For a job step to gain
authorization initially, the first module loaded at the start of the job step must
be an authorized module, and it must have been loaded from an authorized
library. Otherwise, the job step is not authorized initially and cannot
subsequently gain authorization.

For a job step to maintain its authorization, all subsequent modules invoked
during the job step (via LINK, LOAD, ATTACH, and/or XCTL macro
instructions) must be loaded from an authorized library. Otherwise, the job
step loses its authorization and cannot gain authorization.

A library becomes an "authorized" library by the inclusion of its name in a
list called IEAAPFOO. This list is described in more detail in OS/VSl
Planning and Use Guide and OS/VS2 System Programming Library:
Initialization and Tuning Guide.

In VS 1 and VS2, a load module becomes "authorized" by the assignment of
an authorization code to the load module during linkage-editing. This
assignment is made via the P ARM field parameter AC or via the control
statement SETCODE, which are described in the sections that follow.

In VS 1, a load module becomes "authorized" by the inclusion of its name in a
list called IEFSDPPT. This list is described in more detail in OS/VSl
Planning and Use Guide.

Part 1. Linkage Editor 31

Relationship to the Operating System

Time Sharing Option (TSO)

32 OS/VS Linkage Editor and Loader

The linkage editor has the same relationship to the operating system as any
other processing program. It can be executed either as a job step, a
subprogram, or a subtask. Control is passed to the linkage editor in one of
three ways:

• As a job step, when the linkage editor is specified on an EXEC job control
statement in the input stream.

• As a subprogram, with the execution of a CALL macro instruction (after
the execution of a LOAD macro instruction), a LINK macro instruction, or
an XCTL macro instruction.

• As a subtask, in multitasking systems, with the execution of the A IT ACH
macro instruction.

Execution of the linkage editor and the data sets used by the linkage editor
are described to the system with job control language statements. These
statements describe all jobs to be performed by the system.

Note: Job control statements are not to be confused with linkage editor
control statements. Job control statements are processed before the linkage
editor is executed; linkage editor control statements are processed during
linkage editor execution.

When the linkage editor is used under TSO (VS2 only), it is invoked by the
linkage editor prompter program that acts as an interface between the user,
operating system, and linkage editor. Under TSO, execution of the linkage
editor and definition of data sets used by the linkage editor are described to
the system through use of the LINK command that causes the prompter to be
executed. Operands of the LINK command can also be used to specify the
linkage editor options a job requires. Complete procedures for use of the
LINK command are given in the OS/VS2 TSO Terminal User's Guide.

INPUT TO THE LINKAGE EDITOR

Primary Input Data Set

Object Modules

The linkage editor accepts input from two major sources: the primary input
data set and additional data sets. The primary input data set is made available
through job control language specifications. Additional data sets are made
available either through the automatic library call mechanism, or through
user-specified control statements. They must, however, also be defined with
job control language specifications.

Primary and additional input data sets may contain the following types of
data:

• One or more object modules.

• One or more load modules.

• Control statements.

• Combinations of the above (restrictions on certain combinations are noted
where they apply).

Object modules and control statements may be contained in either sequential
or partitioned data sets. Load modules must be contained in partitioned data
sets.

This chapter describes the "linking " functions of the linkage editor only; the
"editing" functions are described in the chapter "Module Editing."

The primary input data set is required for every linkage editor job step. It
must be defined by a DD statement with the ddname SYSLIN. The primary
input can be:

• A sequential data set.

• A member of a partitioned data set.

• A concatenation of sequential data sets and/or members of partitioned
data sets.

The primary input data set must contain object modules and/or control
statements. The modules and control statements are processed sequentially
and their order determines the basic order of linkage editor processing during
a given execution. However, the order of the control sections after processing
does not necessarily reflect the order in which they appeared in the input.

In the examples that follow, only the statements necessary to define the input
to the linkage editor are shown; complete examples are shown in Appendix A.

The primary input to the linkage editor may consist solely of one or more
object modules. The rest of this section discusses object module input from
cards, as a member of a partitioned data set, passed from a previous job step,
and created in a separate job.

Input to the Linkage Editor 33

From Cards

Object module input to the linkage editor may be on cards. The card deck
itself is treated as a sequential data set; the cards are placed in the input
stream, after a DD * statement, as follows:

IISYSLIN
Object Deck A
Object Deck B
1*

DD *

The card input is followed by a / * statement.

An example of the JCL when card decks are used in addition to other input is
as follows:

IISYSLIN
II
Object Deck A
Object Deck B
1*

DD
DD

DSNAME=INPUT, ...

*

By omitting the ddname on the second DD statement, the card input is
concatenated to the data set described on the SYSLIN DD statement.

As a Member of a Partitioned Data Set

Passed from a Previous Job Step

•

34 OS/VS Linkage Editor and Loader

An object module in a partitioned data set can be used as primary input to the
linkage editor by specifying its data set name and member name on the
SYSLIN DD statement. In the following example, the member named
TAXCOMP in the object module library LIBROUT is to be the primary
input; LIBROUT is a cataloged data set:

IISYSLIN DD DSNAME=LIBROUT(TAXCOMP),
II DISP=(OLD,KEEP)

The library member is processed as if it were a sequential data set.

Members of partitioned data sets can be concatenated with other input data
sets, as follows:

IISYSLIN DD DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
II DD DSNAME=LIBROUT(TAXCOMP),
II DISP=(OLD,KEEP)

Library member T AXCOMP is concatenated to data set OBJLIB; both must
contain object modules since they are the primary input.

An object module to be used as input can be passed from a previous job step
to a linkage editor job step in the same job, as in a compile-link edit job. That
is, the output from the compiler is direct input to the linkage editor. In the
following example, an object module that was created in a previous job step
(STEPA) is passed to the linkage editor job step (STEPB):

STEPA:

IISYSGO DD DSNAME=&&OBJECT,DISP=(NEW,PASS), ...

STEPB:

IISYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

The data set name & & OBJECT, used in both job steps, identifies the object
module as the output of the language processor on the SYSGO DD statement,
and as the primary input to the linkage editor on the SYSLIN DD statement.

Note: The double ampersand (&&) in the data set name defines a
temporary data set. These data sets exist for the duration of the job and are
automatically deleted at the end of the job. If the data set is to be preserved
for longer than the duration of a single job, the double ampersand is not used
(DSNAME=OBJECT).

The method used in the preceding example can also be used to retrieve object
modules created in previous steps. If the same data set name is used for the
output of each language processor, one SYSLIN DD statement can be used to
retrieve all the object modules, as follows:

STEPA:

IISYSGO DD DSNAME=&&OBJMOD,DISP=(NEW,PASS), ...

STEPB:

IISYSPUNCH DD DSNAME=&&OBJMOD,DISP=(MOD,PASS)

STEPC:

IISYSLIN DD DSNAME=&&OBJMOD,DISP=(OLD,DELETE)

The two object modules from STEP A and STEPB are placed in the same
sequential data set, && OBJMOD. The SYSLIN DD statement in STEPC
causes both object modules to be used as the primary input to the linkage
editor.

Another method can be used to accomplish this purpose: concatenation of
data sets. This method could be used if the object modules were created in
previous job steps with different member names, as follows:

STEPA:

IISYSGO
II

STEPB:

IISYSPUNCH
II

STEPC:

IISYSLIN
II
II
II

DD

DD

DD

DD

DSNAME=&&OBJLIB(MODA),DISP=(NEW,
PASS), ...

DSNAME=&&OBJLIB(MODB),DISP=(MOD,
PASS), ...

DSNAME=&&OBJLIB(MODA) ,DISP=(OLD,
DELETE)
DSNAME=&&OBJLIB(MODB) ,DISP=(OLD,
DELETE) ,VOL=REF=*.STEPB.SYSPUNCH

The object modules created in STEP A and STEPB were placed in a partitioned
data set with different member names. The two members are concatenated in
STEPC as primary input. Each member is considered to be a sequential data
set.

Input to the Linkage Editor 35'

Created in a Separate Job

Control Statements

If the only input to the linkage editor is an object module from a previous job,
the SYSLIN DD statement contains all the information necessary to locate
the object module, as follows:

IISYSLIN DD DSNAME=OBJECT,DISP=(OLD,DELETE),
II UNIT=2314,VOLUME=SER=LIB613

An object module created in a separate job may also be on cards, in which
case it is handled as described earlier.

The primary input data set may also consist solely of control statements.
When the primary input is control statements, input modules are specified on
INCLUDE control statements (see "Included Data Sets "). The control
statements may be either placed in the input stream or stored in a permanent
data set.

In the following example, the primary input consists of control statements in
the input stream:

IISYSLIN DD *
Linkage Editor Control Statements

1*
In the next example, the primary input consists of control statements stored in
the member INCLUDES in the partitioned data set CTLSTMTS:

IISYSLIN DD DSNAME=CTLSTMTS(INCLUDES),DISP=(OLD,
I I KEEP), . . . /

In either case, the control statements_can_be any of those described in
"Linkage Editor Control Statement Summary," as long as the rules given
there are followed.

Object Modules and Control Statements

The primary input to the linkage editor may contain both object modules and
control statements. The object modules and control statements may be in
either the same data set or different data sets. If the modules and statements
are in the same data set, this data set is described on the SYSLIN DD
statement as any data set is described.

If the modules and statements are in different data sets, the data sets are
concatenated. The control statements may be defined either in the input
stream or as a separate data set.

Control Statements in the Input Stream

36 OS/VS Linkage Editor and Loader

Control statements can be placed in the input stream and concatenated to an
object module data set, as follows:

IISYSLIN DD DSNAME=&&OBJECT, ...
II DD *
Linkage Editor Control Statements

1*

Another method of handling control statements in the input stream is to use
the DDNAME parameter, as follows:

IISYSLIN DD DSNAME=&&OBJECT, ...
II DD DDNAME=SYSIN

IISYSIN DD *
Linkage Editor Control Statements

1*
Note: The linkage editor cataloged procedures use DDNAME=SYSIN for
the SYSLIN DD statement to allow the programmer to specify the primary
input data set required.

Control Statements in a Separate Data Set

Automatic Call Library

A separate data set that contains control statements may be concatenated to a
data set that contains an object module. The control statements for a
frequently used procedure (for example, a complex overlay structure or a
series of INCLUD~tements) can be stored permanently. In the following

, ,example, the nreiiibers of data set CTLSTMTS contain linkage editor control
statements. One of the members is concatenated to data set && OBJECT.

IISYSLIN
II
II

DD
DD

DSNAME=&&OBJECT,DISP=(OLD,DELETE), ...
DSNAME=CTLSTMTS(OVLY),DISP=(OLD,
KEEP), ...

The control statements in the member named OVLY of the partitioned data
set CTLSTMTS are used to structure the object module.

The automatic library call methanism is used to resolve external references
that were not resolved during primary input processing. Unresolved external
references found in modules from additional data sources are also processed
by this mechanism.

Note: The following discussion of automatic library call does not apply to
unresolved weak external references; they are left unresolved.

The automatic library call mechanism involves a search of the directory of the
automatic call library for an entry that matches the unresolved external
reference. When a match is found, the entire member is processed as input to
the linkage editor.

Automatic library call can resolve an external reference when the following
conditions exist; the external reference must be (1) a member name or an
alias of a module in the call library , and (2) defined as an external name in
the external symbol dictionary of the module with that name. If the
unresolved external reference is a member name or an alias in the library, but
is not an external name in that member, the member is processed but the
external reference remains unresolved unless subsequently defined.

The automatic library call mechanism searches the call library defined on the
SYSLIB DD statement. The call library can contain either (1) object modules
and control statements or (2) load modules; it must not contain both.

Modules from libraries other than the SYSLIB call library can be searched by
the automatic library call mechanism as directed by the LIBRARY control

Input to the Linkage Editor 37

SYSLIB DD Statement

System Call Library

38 OS/VS Linkage Editor and Loader

statement. The library specified in the control statement is searched for
member names that match specific external references that ar~ unresolved at
the end of input processing. If any unresolved references are found in the
modules located by automatic library call, they are resolved by another search
of the library. Any external references not specified on a LIBRARY control
statement are resolved from the library defined on the SYSLIB DD statement.

In addition, two means exist to negate the automatic library call mechanism.
The LIBRARY statement can be used to negate the automatic library call for
selected external references unresolved after input processing; the NCAL
option on the EXEC statement can be used to negate the automatic library
call for all external references unresolved after input processing. Use of the
LIBRARY control statement and the NCAL option are discussed after the
SYSLIB DD statement that follows.

If the automatic library call mechanism is to be used, the call library must be a
partitioned data set described by a DD statement with a ddname of SYSLIB.
The call library may be either a system call library or a private call library; call
libraries may be concatenated.

Most of the system processing programs have their own automatic call library
(Figure 10). This library must be defined when an object module produced by
that processor is to be link edited.

Processing Program Library Name

ALGOL SYSt.ALGLIB

COBOL SYS1. COBLIB

FORTRAN SYS1.FORTLIB

PL/I SYS t.PL t LIB

Sort/Merge SYS1.S0RTLIB

Figure to. System Automatic Call Libraries

The call library may contain input/output, data conversion, and/or other
special routines that are needed to complete the module. The processor
creates an external reference for these special routines and the linkage editor
resolves the references from the appropriate call library .

In the following example, a FORTRAN object module created in STEPA is to
be link edited in STEPB, and the FORTRAN automatic call library is used to
resolve external references:

STEPA:

IISYSOBJ
II

STEPB:

IISYSLIN
IISYSLIB

DD

DD
DD

DSNAME=&&OBJMOD,DISP=(NEW,
PASS), ...

DSNAME=&&OBJMOD,DISP=(OLD,DELETE)
DSNAME=SYS1.FORTLIB,DISP=SHR

Private Call Libraries

Concatenation of Call Libraries

Library Control Statement

The disposition of SHR on the SYSLIB DD statement means that other tasks
which may be executing concurrently with STEPB may also use
SYSl.FORTLIB.

The SYSLIB DD statement can also describe a private, user-written library.
In this case, the automatic library call mechanism searches the private library
for unresolved external references. In the following example, unresolved
external references are to be resolved from a private library named
PVTPROG:

IISYSLIB
II

DD DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
VOLUME=SER=PVT002

System call libraries and private call libraries may be concatenated either to
themselves, and/or to each other. When libraries are concatenated, they
must all be either object module libraries or load module libraries; they may
not be mixed.

If object modules from different system processors are to be link edited to
form one load module, the call library for each must be defined. This is
accomplished by concatenating the additional call libraries to the library
defined on the SYSLIB DD statement. In the following example, a
FORTRAN object module and a COBOL object module are to be link
edited; the two sy~tem call libraries are concatenated as follows:

IISYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
II DD DSNAME=SYS1.COBLIB,DISP=SHR

System libraries are cataloged; no unit or volume information is needed.
\

A system call library and a private call library can also be concatenated in this
way. For example, by adding the following statement to the two in the
preceding example, the private call library PVTPROG, which is not cataloged,
is concatenated to the two system call libraries:

II
II

DD DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
VOLUME=SER=PVT002 •

Any external references not resolved from the two system libraries are
resolved from the private library.

The LIBRARY control statement can be used to direct the automatic library
call mechanism to a library other than that specified in the SYSLIB DD
statement. Only external references listed on the LIBRARY statement are
resolved in this way. All other unresolved external references are resolved
from the library in the SYSLIB DD statement.

The LIBRARY statement can also be used to specify external references that
are not to be resolved by the automatic library call mechanism. The
LIBRARY statement specifies the duration of the nonresolution: either
during the current linkage editor job step, called restricted no-call; or during
this or any subsequent linkage editor job step, called never-call.

Examples of each use of the LIBRARY statement follow; a description of the
format is given in "Linkage Editor Control Statement Summary."

Input to the Linkage Editor 39

Additional Call Libraries

\

Restricted No-CaII-F~tion

40 OS/VS Linkage Editor and Loader

If the additional libraries are to be used to resolve specific references, the
LIBRARY statement contains the ddname. of a DD statement that describes
the library. The LIBRARY statement also contains~ in parentheses, the
external references to be resolved from the library; i.e., the names of the
members to be used from the library. If the unresolved external reference is
not a member name in the specified library, the reference remains unresolved
unless subsequently defined.

For example, two modules (DATE and TIME) from a system call library have
been rewritten. The new modules are to be tested with the calling modules
before they replace the old modules. Because the automatic library call
mechanism would otherwise search the system call library (which is needed
for other modules), a LIBRARY statement is used, as follows:

IISYSLIB
IITESTLIB
IISYSLIN
II

LIBRARY
1*

DD
DD
DD
DD

DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=TEST,DISP=(OLD,KEEP), ...
DSNAME=ACCTROUT, ...

*
TESTLIB(DATE,TIME)

Two external references, DATE and TIME, are resolved from the library
described on the TESTLIB DD statement. All other unresolved external
references are resolved from the library described on the SYSLIB OD
statement.

The programmer can use the LIBRARY statement to specify those external
references in the output module for which there is to be no library search
during the current linkage editor job step. This is done by specifying the
external reference(s) in parentheses without specifying a ddname. The
reference remains unresolved, but the linkage editor marks the module
executable.

For example, a program contains references to two large modules that are
called from the automatic call library . One of the modules has been tested and
corrected, the other is to be tested in this job step. Rather than execute the
tested module again, the restricted no-call function is used to prevent
automatic library call from processing the module as follows:

II
IISYSLIB
II

IISYSLIN
II

LIBRARY
1*

EXEC
DD

DD
DD

PGM=HEWL,PARM=LET
DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
VOLUME=SER=PVT002

DSNAME=&&PAYROL, ...

*
(OVERTIME)

As a result, the external reference to OVERTIME is not resolved by
automatic library call.

Never-Call Function

NeAL Option

Included Data Sets

The never-call function specifies those external references that are not to be
resolved by automatic library call during this or any subsequent linkage editor
job step. This is done by specifying an asterisk followed by the external
reference(s) in parentheses. The reference remains unresolved but the linkage
editor marks the module executable.

For example, a certain part of a program is never executed, but it contains an
external reference to a large module (CITYT AX) which is no longer used by
this program. However, the module is in a call library needed to resolve other
references. Rather than take up storage for a module that is never used, the
never-call function is specified, as follows:

II
IISYSLIB
II

IISYSLIN
II

LIBRARY
1*

EXEC
DD

PGM=HEWL,PARM=LET
DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
VOLUME=SER=PVT002

DD DSNAME=TAXROUT,DISP=OLD, ...
DD *
*(CITYTAX)

As a result, when program TAXROUT is link edited, the external reference to
CITYT AX is not resolved by automatic library call.

When the NCAL option is specified, no automatic library call occurs to
resolve external references that are unresolved after input processing. The
NCAL option is similar to the restricted no-call function on the LIBRARY
statement, except that the NCAL option negates automatic library call for all
unresolved external references and restricted no-call negates automatic library

. call for selected unresolved external references. With NCAL, all external
references that are unresolved after input processing is finished, remain
unresolved. The module is however, marked executable.

The Ne*L optio~ng parameter that is specified on the
EXEC statement as described in "No AUtomatic Library-Call Option" under
"Job Control Language Summary."

The INCLUDE control statement requests the linkage editor to use additional
data sets as input. These can be sequential data sets containing object
modules and/or control statements, or members of partitioned data sets
containing object modules and/ or co~trol statements, or load modules.

The INCLUDE statement specifies the ddname of a DD statement that
describes the data set to be used as additional input. If the DD statement
describes a partitioned data set, the INCLUDE statement also contains the
name of each member to be used. See "Linkage Editor Control Statement
Summary" for a detailed description of the format of the INCLUDE
statement.

Input to the Linkage Editor 41

Primary Input
Data Set OBJMOD

Figure 11. Processing of One INCLUDE Control Statement

Primary Input
Data Set SYSLIN

Include OBJMOD

Sequential
Data Set OBJMOD

Include OBJIB (MODA)

Library OBJLIB
Member MODA

§ } not proce~d

Figure 12. Processing of More than One INCLUDE Control Statement

42 OS/VS Linkage Editor and Loader

Library OBJLIB
Member MODA

Including Sequential Data Sets

Including Library Members

When an INCLUDE control statement is encountered, the linkage editor
processes the module or modules indicated. Figure 11 shows the processing of
an INCLUDE statement. In the illustration, the primary input data set is a
sequential data set named OBJMOD which contains an INCLUDE statement.
After processing the included data set, the linkage editor processes the next
primary input item. The arrows indicate the flow of processing.

If an included data set also contains an INCLUDE statement, this specified
module is also processed. However, any data following the INCLUDE
statement is not processed.

If the OBJMOD data set shown in Figure 11 is itself included, the data
following the INCLUDE statement for OBJLIB is not processed. Figure 12
shows the flow of processing for this example.

Sequential data sets containing object modules and/or control statements can
be specified by an INCLUDE control statement. In the following example, an
INCLUDE statement specifies the ddnames of two sequential data sets to be
used as additional input:

IIACCOUNTS DD DSNAME=ACCTROUT,DISP=(OLD,KEEP), .. .
IIINVENTRY DD DSNAME=INVENTRY,DISP=(OLD,KEEP), .. .
IISYSLIN DD DSNAME=QTREND, ...
II DD *

INCLUDE ACCOUNTS,INVENTRY
1*
Each ddname could also have been specified on a separate INCLUDE
statement; with either method, a DD statement must be specified for each
ddname.

Another method of doing the preceding example is given in "Including
Concatenated Data Sets."

One or more members of a partitioned data set can be specified on an
INCLUDE control statement. The member name must be specified on the
INCLUDE statement; no member name should appear on the DD statement
itself.

In the following example, one member name is specified on the INCLUDE
statement:

IIPAYROLL
IISYSLIN
II

INCLUDE
1*

DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), ...
DD DSNAME=&&CHECKS,DISP=(OLD,DELETE)
DD *
PAYROLL(FICA)

If more than one member of a partitioned data set is to be included, the
INCLUDE statement specifies all the members to be used from each library.
The member names are not repeated on the DD statement.

In the following example, an INCLUDE statement specifies two members
from each of two libraries to be used as additional input:

IIPAYROLL DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), .. .
IIATTEND DD DSNAME=ATTROUTS,DISP=(OLD,KEEP), .. .
IISYSLIN DD *

INCLUDE PAYROLL(FICA,TAX),ATTEND(ABSENCE,OVERTIME)
1*

Input to the Linkage Editor 43

Including Concatenated Data Sets

44 OS/VS Linkage Editor and Loader

Each library could have been specified on a separate INCLUDE statement;
with either method, a DD statement must be specified for each ddname.

Another method of doing this example is given in "Including Concatenated
Data Sets."

Several data sets can be designated as input with one INCLUDE statement
that specifies one ddname; additional data sets are then concatenated to the
data set described on the specified DD statement. When data sets are
concatenated, all of the records must have the same characteristics (that is, _
format, record length, block size, etc.).

Sequential Data Sets: In the following example, two sequential data sets are
concatenated and then specified as input with one INCLUDE statement:

IICONCAT DD DSNAME=ACCTROUT,DISP=(OLD,KEEP), .. .
II DD DSNAME=INVENTRY,DISP=(OLD,KEEP), .. .
IISYSLIN DD DSNAME=SALES,DISP=OLD, ...
I I· DD *

INCLUDE CON CAT
1*
When the INCWf>E statement is recognized, the contents of the sequential
data--s-ets ACCTROUT and INVENTRY are processed.

Library Members: Members from more than one library can be designated as
input with one ddname on an INCLUDE statement. In this case, all the
members are listed on the INCLUDE statement; the partitioned data sets are
concatenated using the ddname from the INCLUDE statement:

II CON CAT DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), .. .
II DD DSNAME=ATTROUTS,DISP=(OLD,KEEP), .. .
IISYSLIN DD DSNAME=REPORT,DISP=OLD, ...
II DD *

INCLUDE CONCAT(FICA,TAX,ABSENCE,OVERTIME)
1*
When the INCLUDE statement is recognized, the two libraries PA YROUTS
and ATTROUTS are searched for the four members; the members are then
processed as input.

OUTPUT FROM THE LINKAGE EDITOR

Output Load Module

Output Module Library

The linkage editor produces two types of output: a load module and
diagnostic information. The principal output of the linkage editor is the output
load module. The linkage editor always places this load module in a
partitioned data set. In addition, the linkage editor issues diagnostic
information. Error and/or warning messages, module disposition data, and
optional diagnostic output are stored in the diagnostic output data set.

The linkage editor produces one or more load modules (see Appendix G)
from the input processed. When more than one load module is produced, the
process is called multiple load module processing.

Whether or not the linkage editor produces one or more load modules, the
following apply:

• The load module is stored in a partitioned data set called the output module
library.

• The load module must have an entry point; if the programmer has not
assigned one, the linkage editor does.

• The output load module is assigned an authorization code.

• During processing, the linkage editor reserves and collects common areas,
as specified in the source language program.

• During processing, the linkage editor accumulates total length and
individual displacements for each pseudo register (external dummy
section).

• During processing, the linkage editor collects and recorPsidentification
data in the CSECT Identification (IDR) records.

• During the processing of a load module, the linkage editor deletes any
private code (unnamed control section) having a length of zero and any
identification data associated with it.

The linkage editor stores every load module it produces in the output module
library. This library is a partitioned data set that must be described by a DD
statement with the name SYSLMOD. The data set name of the library is also
specified on this DD statement. The data set can be either temporary (defined
with a double ampersand), or permanent (defined without a double
ampersand). If the data set name is either SYSl.LINKLIB or SYSl.SVCLIB,
it would be advisable to re-IPL the system after linkage editor processing is
complete. This ensures that the corresponding D~ta Extent Block (DEB) is
updated to reflect additional-extents ifsecondarj allocation of direct-access
space was required.

Whether the data set is permanent or temporary, each module must be
assigned a unique name, called the member name, to distinguish one load
module from another. The output module can be assigned aliases if the
programmer wants the module either identified by more than one name or
entered for execution at several different points. Each member name and alias

Output from the Linkage Editor 45

Member Name

46 OS/VS Linkage Editor and Loader

in a load module library must be unique. The library member name and aliases
for each load module appear as separate entries in the library directory, along
with the module attributes. (Some module attributes can be assigned on the
EXEC statement for each linkage editor job step; see "Module Attributes" in
"Job Control Language Summary.")

The member name of the output load module may be specified either on the
SYSLMOD DD statement, in a NAME statement, or both. If the member
name is not specified, the default is TEMPNAME. If this default name has
been previously assigned to a load module, using it again will cause a failure.

Assigned on SYSLMOD DD Statement: If the member name is assigned on
the SYSLMOD DD statement, the name is written in parentheses following
the data set name of the library. For example:

IISYSLMOD DD DSNAME=MATHLIB(SQDEV),DISP=(NEW,KEEP),
I I UNIT=2314, SPACE=(TRK, (100, 10,1)),
II VOLUME=SER=LIB002

The member name SQDEV is assigned to the load module, which is placed in
the new library named MA THLIB.

Assigned on NAME Control Statement: If the member name is not specified
on the SYSLMOD DD statement, it may be assigned in a NAME control
statement. For example:

IISYSLMOD DD DSNAME=MATHLIB,DISP=(NEW,KEEP), ...
IISYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
II DD *

NAME SQDEV
1*
The member name SQDEV is assigned to the load module, which is placed in
the library named MA THLIB.

Assigned on Both: If both the SYSLMOD DD statement and the NAME
control statement specify a member name, the names should be identical. If
the names are different, the name on the NAME control statement is used as
the member name.

Note: If a "link-edit and go" sequence of job steps is performed and the
program name in the EXEC statement of the "go" step contains a backward
reference to the SYSLMOD DD statement in the "link-edit" step, the user
must ensure that the member name specified in the SYSLMOD DD statement
is valid and is not overridden by a NAME control statement. For example:

IILKED EXEC PGM=HEWL

IISYSLMOD
II
IISYSLIN
/1

NAME
1*
IIGO

DD

DD
DD
READ

EXEC

DSNAME=&&LOADST(GO),DISP=(NEW,
PASS), ...
DSNAME=&&OBJECT,DISP=(OLD,DELETE)

*

PGM=*.LKED.SYSLMOD

Alias Names

E""" Po;",

The EXEC statement of the GO step specifies that the module to be executed
is described in the LKED step in the SYSLMOD statement. The system tries
to locate a member named GO; however, the output module was assigned the
name READ.

Replacing an Identically Named Library Member: An output module can
replace an identically named member in the library in either of two ways. The
SYSLMOD DD statement names an existing data set, as follows:

IISYSLMOD DD DSNAME=MATHLIB(SQDEV),DISP=(OLD,
II KEEP), ...

Or, the NAME control statement specifies the replace function, as follows:

NAME SQDEV(R)

In either case, the member named SQDEV is replaced with a new module of
the same name.

An output module can be assigned a maximum of t6 aliases, specified with
the ALIAS control statement. The aliases exist in addition to the member
name of the output module. When a module is referred to by an alias,
execution begins at the external name specified by the alias. If the name
specified by the ALIAS statement is not an external symbol within the
module, the main entry point is used.

For example, an output module is to be assigned two additional entry points,
CODEt and CODE2. In addition, due to a misunderstanding, calling modules
have been written and tested using both ROUTONE and ROUTt to refer to
the output module. Rather than correct the calling modules, an alternate
library member name (alias) is also assigned.

IISYSLMOD DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
II VOLUME=SER=LIB001
IISYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
II DD *

ALIAS CODE1,CODE2,ROUTONE
NAME ROUT 1

1*
The names CODEt, CODE2, and ROUTONE appear in the library directory
along with ROUTt, the member name. Because CODEt and CODE2 are
defined as external symbols within the output module, when these names are
used, execution begins at these points. Control may be passed to the main
entry point by using either the member name ROUTt or the alias
ROUTONE.

Every load module must have a main entry point. The programmer may
specify the entry point in one of two ways:

• On a linkage editor ENTRY control statement.

• On an Assembler language END statement, which is the last statement in
the source program. The assembler produces an object module and an
END statement for the module. The assembler-produced END statement
contains an entry point only if the source language END statement
contained one.

Output from the Linkage Editor 47

Authorization Code

48. OS/VS Linkage· Editor and Loader

From its input, the linkage editor selects the entry point for the load modille
as follows:

t. From the first ENTRY control statement in the input.

2. If there is no ENTRY control statement in the input, from the first
assembler-procuced END statement that specifies an entry point.

3. If no ENTRY control statement or no assembler-produced END statement
specifies an entry point, the first byte of the first control section of the load
module is used as the entry point.

In general, the entry point should be explicitly specified because it is not
always possible to predict which control section will/be first in the output
module.

When a load module is reprocessed by the linkage editor, it has no END
statement. Therefore, if the first byte of the first control section of the load
module is not a suitable entry point, the entry point must be specified in one
of two ways:

• Through an ENTRY control statement.

• Through the assembler-produced END statement of another input module,
which is being processed for the first time. This object module must be the
first such module to be processed by the linkage editor.

Entry points other than the main entry point may be specified with an ALIAS
control statement. The symbol specified on the ALIAS statement must be
defined as an external symbol in the load module. Any reference to that
symbol causes execution of the module to begin at that point instead of the
main entry point.

In the following example, assume that CDCHECK, CODEt, and CODE2 are
defined as external symbols in the output module:

I/SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
II DD *

1*

ENTRY CDCHECK
ALIAS CODE1,CODE2,ROUTONE
NAME ROUT 1

As a result of the preceding control statements, CDCHECK is the main entry
point; CODEt and CODE2 are additional entry points. Any reference to
ROUTONE or ROUTt causes execution to begin at CDCHECK; any
reference to CODE! and CODE2 causes execution to begin at these points.

Each load module link edited is assigned an authorization code that
determines whether or not the module is allowed to use restricted system
services and resources. A non-zero code allows the module to use restricted
services and resources, and a zero code disallows that usage. The
authorization code becomes part of the directory entry for the module in the
library containing the module.

Reserving Storage in the Output Load Module

Processing Pseudo Registers

In FORTRAN, Assembler language, and PL/I, the programmer can create
control sections that reserve virtual storage areas that contain no data or
instructions. These control sections are called "common" or "static external"
areas, and are produced in the object modules by the language translators.
These common areas are used, for example, as communication regions for
different parts of a program or to reserve virtual storage areas for data
supplied at execution time. These common areas are either named or
unnamed (blank).

Collection of Common Area~: During processing, the linkage editor collects
common areas. That is, if two or more blank common areas are found in the
input, the largest blank common area is used in the output module; all
references to a blank common area refer to the one retained. If two or more
named common areas have the same name, the largest of the identically
named common areas is used in the output module; all references to the
named common areas refer to the one area retained.

Identically Named Common Areas and Control Sections: If a control section
(as is generated from a BLOCK DATA subprogram in FORTRAN, for
example) and a named common area have the same name, the length of the
control section must be greater than or equal to the length of the named
common area. If the control section is smaller in length than the named
common area, a diagnostic message is issued. The control section is regarded
as the largest of the common areas processed with that name. All subsequent
control sections and/or common areas with the same name are ignored.

In PL/I, programmers can use pseudo registers to define storage that will not
be reserved in the load module but can be allocated dynamically during
execution. The external dummy sections generated by Assembler F or
Assembler H correspond to the pseudo registers of PL/I.

The linkage editor accumulates the total length of all pseudo registers in the
input and records the displacement of each. If two or more pseudo registers
have the same name, the one with the longest length and the most restrictive
alignment will be retained. All other pseudo registers with the same name will
be ignored; all references to the identically named pseudo registers will refer
to the one retained.

Multiple Load Module Processing

The linkage editor can produce more than one load module in a single job
step. A NAME control statement in the input stream is used as a delimiter for
input to a load module. If additional input modules follow the NAME
statement in the input stream, they are used in the formation of the next load
module.

Each load module that is formed has a unique name and is placed in the same
library as a separate member. When processing multiple load modules in a
single job step, the options and attributes specified in the EXEC statement
for that job step apply to all load modules created. If the linkage editor
terminates abnormally during processing of any of the output modules,
neither that module nor any of the modules yet to be processed in the job step
is processed or placed in the library. Load modules processed before
abnormal termination have already been placed in the library.

Output from the Linkage Editor 49

Diagnostic Output

DiaglIOstic Messages

Module Disposition Messages

In the following example, two load modules are produced in one linkage
editor job step:

IILKED EXEC PGM=HEWL,PARM='MAP,LIST'

IISYSLMOD
II

IIMODTWO
IISYSLIN
II

1*

ENTRY
NAME
INCLUDE
ENTRY
NAME

DD DSNAME=PAYROLL(OVERTIME),DISP=OLD,
UNIT=2314,VOLUME=SER=LIB002

DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
DD DSNAME=&&OBJECT(A),DISP=(OLD,DELETE)
DD *
INIT
OVERTIME
MODTWO(B)
HSKEEP
VACATION

The first load module is produced from the object module in the data set
defined on the SYSLIN DD statement. The main entry point is INIT and the
member name is OVERTIME.

The second load module is produced from the object module specified by the
INCLUDE statement. The main entry point is HSKEEP and the member
name is VACATION.

If an INCLUDE statement specifies a member name that is different from the
member name on the DD statement, the member specified on the DD
statement must exist even though it is not to be included.

Both load modules are placed in the library PAYROLL, defined on the
SYSLMOD statement.

The parameters on the EXEC card specify that a module map and a control
statement listing is produced for each load module. The map and listing are
discussed in detail in the next section.

Diagnostic information is stored in the diagnostic output data set, which must
be defined by a DD statement with the name SYSPRINT. This output is a
collection of messages generated by the linkage editor, as well as any optional
output requested by the programmer.

The linkage editor generates two types of messages: module disposition
messages and error/warning messages. Descriptions of the error/warning

I messages can be found in OS /VS Message Library: Linkage Editor and
Loader Messages.

Module disposition messages of several types are printed for each load
module produced. The first message indicates the options and attributes
specified for each module. Invalid options or attributes are replaced by
INVALID in the output. Messages are also generated to inform the
programmer that incompatible attributes have been specified.

so OS/VS Linkage Editor and Loader

Error/Warning Messages

Disposition messages also describe the handling of the load module. These
messages are preceded by several asterisks, and are:

• member name NOW ADDED TO DATA SET.

• member name NOW REPLACED IN DATA SET.

• member name DOES NOT EXIST BUT HAS BEEN ADDED TO THE
DATA SET.

The replacement function was specified, but the member did not exist in
the data set; the module is added to the data set using the member name
given.

• alias name IS AN ALIAS FOR THIS MEMBER.

• MODULE HAS BEEN MARKED NOT EXECUTABLE.

In addition, module disposition messages are used when the re-enterable
(RENT), reusable (REUS), and/or refreshable (REFR) linkage editor
options have been specified for the module. When one or more of these
module attributes has been indicated, a message informs the user what
attribute(s) have been assigned to the module. This message indicates
whether the load module has been marked re-enterable or not re-enterable,
reusable or not reusable, refreshable or not refreshable, depending on the
option or options used. (See "Reusablity Attributes" and "Refreshable
Attribute" in the Job Control Language Summary section for more
information on these options.)

The message consists of several asterisks and MODULE HAS BEEN MARKED,
followed by the attribute(s) assigned as a result of the linkage editor options
specified. The programmer, of course, is responsible for verifying that the
module actually is re-enterable, reusable, and/or refreshable. The following
messages are examples of some possible combinations:

• MODULE HAS BEEN MARKED REFRESHABLE.

• MODULE HAS BEEN MARKED NOT REFRESHABLE.

• MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.

• MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not executable,
only the MODULE HAS BEEN MARKED NOT EXECUTABLE message appears; no
attribute messages are generated.

Certain conditions that are present when a module is being processed can
cause an error or warning message to be printed. These messages contain a
message code and message text. If an error is encountered during processing,
the message code for that error is printed with the applicable symbol or
record in error. After processing is completed, the diagnostic message

Output from the Linkage Editor ,S 1

associated with that code is printed. The error warning messages have the
following format:

IEWOmms message text

where:

IIEWO indicates a linkage editor message

is the message number mm

s is the severity code, and may be one of the following values:

Indicates a condition that may cause an error during execution
of the output module. A module map or cross-reference table is
produced if specified by the programmer. The output module is
marked executable.

2 Indicates an error that could make execution of the output
module impossible. Processing continues. When possible, a
module map or cross-reference table is produced if specified by
the programmer. The output module is marked not executable
unless the LET option is specified on the EXEC statement.

3 Indicates an error that will make execution of the output
module impossible. Processing continues. When possible, a
module map or cross-reference table is produced if specified by
the programmer. The output module is marked not executable.

4 Indicates an error condition from which no recovery is possible.
Processing terminates. The only output is diagnostic messages.

Note: A special severity code of zero is generated for each control
statement printed as.a result of the LIST option. Severity zero
does not indicate an error or warning condition.

The highest severity code encountered during processing is
multiplied by 4 to create a return code that is placed in register 15
at the end of processing. This return code can be tested to
determine whether or not processing is to continue (see "Job
Control Language Summary").

message text contains combinations of the following:

• The message classification (either error or warning).

• Cause of error.

• Identification of the symbol, segment number (when in
overlay), or input item to which the message applies.

• Instructions to the programmer.

• Action taken by the linkage editor.

Optionally, error/warning messages can be sent to a separate output data set,
which is defined by specifying TERM in the P ARM field of the EXEC
statement and including a SYSTERM DD statement. This separate
SYSTERM data set consists of only numbered error/warning messages. It
supplements the SYSPRINT output data set, which can also include module
disposition messages and optional diagnostic output. When SYSTERM is
used, the numbered error/warning messages appear in both data sets.

I OS/VS Message Library: Linkage Editor and Loader Messages contains a
complete list of error/warning messages .

. 520S/VS Linkage Editor and Loader

Sample Diagnostic Output

Optional Output

Figure 13 shows the format of the diagnostic output for the linkage editor. No
optional output was requested other than the list of control statements.

The letters indicate the disposition and error/warning messages as follows:

A Is a module disposition message that lists the options and attributes
specified. Additional information is printed indicating the variable and
default options used.

B Is a list of control statements used (IEWOOOO) and the message codes
(IEW0201 and IEW0461) for error/warning conditions discovered during
processing. For error/warning message codes, the symbol in error, if
necessary, is also listed (CCCCCCCC and BASEDUMP).

c Is a module disposition message (****) that indicates that the output
module (BBBBBBBB) has been added to the output module data set.

D Is the diagnostic message directory that contains the text of the error codes
listed in item B.

In addition to error/warning and disposition messages, the linkage editor can
produce diagnostic output as requested by the programmer. This optional
output includes a control statement listing, a module map, and a
cross-reference table.

Control Statement Listing

Module Map

A

B

c

D

If the LIST option is specified on the EXEC statement, a listing of all linkage
editor control statements is produced. For each control statement, the listing
contains a special message code, IEWOOOO, followed by the control statement.
Item B in Figure 13 contains an example of a control statement listing.

If the MAP option is specified on the EXEC statement, a module map of the
output load module is produced. The module map shows all control sections in
the output module and all entry names in each control section. Named
common areas are listed as control sections.

For each control section, the module map indicates its origin (relative to zero)
and length in bytes (in hexadecimal notation). For each entry name in each
control section, the module map indicates the location at which the name is
defined. These locations are also relative to zero.

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LE'l',NCAL,XREF,OVLY,L1ST
DEFAULT OPTION(S) USED - SIZE'=(G5536,6144)

IEWOOOO NAME BBBBBBBB
IEW0201
IEW0461 CCCCCCCC
IEW0461 BASEDUMP

****BBBBBBBB NOW ADDED TO DATA SET
DIl,GNOSTIC MESSAGE DIRECTORY

IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLAY OPTION
CANCELED.

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS
SPECIFIED.

Figure 13. Diagnostic Messages Issued by the Linkage Editor

Output from the Linkage Editor 53

Cross Reference Table

CONTROL SECTION

NAME ORIGIN LENGTH

COBSUB 00 33A
$PRIVATE 340 EF

MAINMOD 430 166
ILBODSPO· 598 5E2
ILBOSTPO· B80 35

ENTRY ADDRESS 430
TOTAL LENGTH BB8

If the module is not in an overlay structure, the control sections are arranged
in ascending order according to their origins. An entry name is listed with the
control section in which it is defined.

If the module is an overlay structure, the control sections are arranged by
segment. The segments are listed as they appear in the overlay structure, top
to bottom, left to right, and region by region. Within each segment, the
control sections and their corresponding entry names are listed in ascending
order according to their assigned origins. The number of the segment in which
they appear is also listed.

In any module map, the following are identified by a dollar sign:

• Blank common area.

• Private code (unnamed control section).

• For overlay programs, the segment table and each entry table.

When the load module processed by the linkage editor does not have an origin
of zero, the linkage editor generates a one-byte private code (unnamed
control section) as the first text record. This private code is deleted in any
subsequent reprocessing of the load module by the linkage editor.

Each control section that is obtained from a call library during automatic
library call is identified by an asterisk after the control section name.

At the end of the module map is the entry address, that is, the relative address
of the main entry point. The entry address is followed by the total length of
the module in bytes; in the case of an overlay module, the length is that of the
longest path. Pseudo registers, if used, also appear at the end of the module
map; the name, length, and displacement of each pseudo register is given.

Figure 14 contains a module map with five control sections. There are two
named control sections (COBSUB snd MAINMOD), one unnamed control
section (designated by $PRIVATE), and two control sections obtained from a
call library (ILBODSPO and ILBOSTPO). In addition, two entry names are
defined, SUB 1 in the unnamed control section and ILBOSTP 1 in control
section ILBOSTPO.

Note: The HMBLIST service aid program described in the OS/VSl Service
Aids publication can also be used to obtain a module map.

If the XREF option is specified on the EXEC statement, a cross-reference
table is produced. The cross-reference table consists of a module map and a
list of cross-references for each control section. Each address constant that
refers to a symbol defined in another control section is listed with its assigned

ENTRY

NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

SUB1 340

ILBOSTP1 B96

.... GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

Figure 14. Module Map

54 OS/VS Linkage Editor and Loader

CONTROL SECTION

NAME ORIGIN LENGTH

COBSUB 00 33A
$ PRIVATE 340 EF

MAINMOD 430 166
ILBODSPO* 598 5E2
I LBOSTPO * B80 35

LOCATION REFERS TO SYMBOL

250
258
478

ENTRY ADDRESS
TOTAL LENGTH

ILBOSTPO
I LBOSTP 1
COBSUB

430
BB8

another (instead of using external symbols and entry names) the control
section name is listed as the symbol referred to.

For overlay programs, this information is provided for each segment; in
addition, the number of the segment in which the symbol is defined is
provided.

If a symbol is unresolved after processing by the linkage editor, it is identified
by $UNRESOLVED in the list. However, if an unresolved symbol is marked
by the never-call function (as specified on a LIBRARY control statement), it
is identified by $NEVER-CALL. If an unresolved symbol is a weak external
reference, it is identified by $UNRESOL VED(W).

Figure 15 contains a cross-reference table for the same program whose
module map is shown in Figure 14. All of the information from the module
map is present, plus a list of cross references for each control section.

CROSS-REFERENCE TABLE

ENTRY

NAME LOCATION

SUB1 340

ILBOSTP1 B96

NAME LOCATION NAME LOCATION NAME LOCATION

IN CONTROL SECTION

ILBOSTPO
ILBOSTPO
COBSUB

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

254
450

ILBODSPO
SUB1

ILBODSPO

Figure 15. Cross-Reference Table

Output from the Linkage Editor 55

MODULE EDITING

Editing Conventions

Input Modules

MODAl

CSECTA }~
MODA2

/' /
CSECTl

/
CSECT2

(
V

CSECT3

l/
Figure 16. Editing a Module

The linkage editor performs editing functions either automatically or as
directed by control statements. These editing functions provide for program
modification on a control section basis. That is, they make it possible to
modify a control section within an object or load module, without recompiling
the entire source program.

The editing functions can modify either an entire control section or external
symbols within a control section. Control sections can be deleted, replaced, or
arranged in sequence; external symbols can be deleted or changed. (External
symbols are control section names, entry names, external references, named
common areas, or pseudo registers.)

Whatever function is used, it is requested in reference to an input module.
The resulting output load module reflects the request. That is, no actual
change, deletion, or replacement is made to an input module. The requested
alterations are used to control linkage editor processing (Figure 16).

In requesting editing functions, certain conventions should be followed to
ensure that the specified modification is processed correctly. These
conventions concern the following items:

• Entry points for the new module.

• Placement of control statements.

• Identical old and new symbols.

Entry Points: Each time the linkage editor reprocesses a load module, the
entry point for the output module should be specified in one of two ways:

• Through an ENTRY control statement.

JCL and Control Statements Output Load Module

IISYSLMOD DD DSNAME=NEWLIB(MODA1A2), ...
IIMODATWO DD DSNAME=MODA2, .. .
IISYSLIN DD DSNAME=MODA1, .. .
II DD *

ENTRY CSECT3
REPLACE CSECT2(CSECTA)
INCLUDE MODATWO

MODAIA2

/' /
CSECTl

l/
CSECTA

/
CSECT3

l/

Module Editing 57

• Through the assembler-produced END·statement of an input object
module, if one is present. If the entry point specified in the
assembler-produced END statement is not defined in the object module,
the entry name must be defined as an external reference.

\

The entry point assigned must be defined as an external name within the
resulting load module.

Placement of Control Statements: The control statement (such as CHANGE
or REPLACE) used to specify an editing function must precede either the
module to be modified, or the INCLUDE statement that specifies the module.
If an INCLUDE statement specifies several modules, the CHANGE or
REPLACE statement applies only to the first module included.

Identical Old and New Symbols: The same symbol should not appear as both
an old external symbol and a new external symbol in one linkage editor run. If
a cot:ltrol section is to be replaced by another control section with the same
name, the linkage editor handles this automatically (see "Automatic
Replacement") .

Changing External Symbols

58 OS!VS Linkage Editor and Loader

The linkage editor can be directed to change an external symbol to a new
symbol while processing an input module. External references and address
constants within the module automatically refer to the new symbol. External
references from other modules to a changed external symbol must be changed
with separate control statements.

Both the old and the new symbols are specified on either a CHANGE control
statement or a REPLACE control statement. The use of the old symbol
within the module determines whether the new symbol becomes a control
section name, an entry name, or an external reference. The old symb~l
appears first, followed by the new symbol in parentheses.

The CHANGE control statement changes a control section name, an entry
name, or an external reference. The REPLACE statement changes or deletes
an entry name; if the symbols on a REPLACE statement are control section
names, the entire control section is replaced or deleted (see "Replacing
Control Sections").

The CHANGE statement must immediately precede either the input module
that contains the external symbol to be changed, or the INCLUDE statement
that specifies the input module. The scope of the CHANGE statement is
across the immediately following module (object module or load module).
The END record in the immediately following object module or the
end-of-module indication in the load module terminates the action of the
CHANGE statement.

In the following example, assume that SUBONE is defined as an external
reference in the input load module. A CHANGE statement is used to change
the external reference to NEWMOD (Figure 17).

IISYSLMOD DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
II VOLUME=SER=PVT002
IISYSLIN DD *

ENTRY BEGIN
CHANGE SUBONE(NEWMOD)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)

1*

Input Module

MAINROUT

./ ./
BEGIN ENTRY

CALLSUBONE

CALLSUBONE

J-------r-/

CALLSUBONE

_____ ~v

JCL and Control Statements

IISYSLMOD
IISYSLIN

ENTRY
CHANGE
INCLUDE
NAME

1*

DD DSNAME=PVTLIB, ...
DD *
MAINEP
SUBONE(NEWMOD),BEGIN(MAINEP)
SYSLMOD(MAINROUT)
MAINROUT(R)

Output Load Module

MAINROUT

./ ./
MAINEP ENTR Y

CALL NEWMOD

CALLNEWMOD

t--------t""/

CALLNEWMOD

...... ___ "v
Figure 17. Changing an External Reference and an Entry Point

In the load module MAINROUT, every reference to SUBONE is changed to
NEWMOD. Note also that the INCLUDE statement specifies a ddname of
SYSLMOD. This allows a library to be used both as input and as the output
module library.

More than one change can be specified on the same control statement. If, in
the same example, the entry point is also to be changed, the two changes can
be specified at once (Figure 17).

IISYSLMOD DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
II VOLUME=SER=PVT002
IISYSLIN DD *

ENTRY MAINEP
CHANGE SUBONE(NEWMOD),BEGIN(MAINEP)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)

1*
The main entry point is now MAINEP instead of BEGIN. The ENTRY
control statement specifies the new entry point because this is the entry point
that is entered in the library directory entry for the load module.

Replacing Control Sections
An entire control section can be replaced with a new control section. Control
sections can be replaced either automatically or with a REPLACE control
statement. Automatic replacement acts upon all input modules; the
REPLACE statement acts only upon the module that follows it.

Notes:

• Any CSECT Identification (IDR) records associated with a particular
control section are also replaced .

• (For Assembler language programmers only.) When some but not all
control sections of a separately assembled module are to be replaced,
A-type address constants that refer to a deleted symbol will be incorrectly
resolved unless the entry name is at the same displacement from the origin
in both the old and the new control section. If all control sections of a
separately assembled module are replaced, no restrictions apply.

Module Editing 59

Automatic Replacement

Example 1

Example 2

60. OS/VS Linkage Editor and Loader

Control sections are automatically replaced if both the old and the new
control section have the same name. The first of the identically named control
sections processed by the linkage editor is made a part of the output module.
All subsequent identically named control sections are ignored; external
references to identically named control sections are resolved with respect to
the first one processed. Therefore, to cause automatic replacement, the new
control section must have the same name as the control section to be
replaced, and must be processed before the old control section.

Caution: Automatic replacement applies to duplicate control section names
only; if duplicate entry points exist in control sections with different names, a
REPLACE control statement must be used to specify the entry point name. If
a control section being automatically replaced contains unresolved external
references and the control section replacing it does not, the parameter NCAL
must be specified or the unresolved external references must be explicitly
deleted using the REPLACE statement or marked for restricted no-call or
never-call using the LIBRARY statement; otherwise, the unresolved external
reference is retained.

Note on Overlay Programs: When identically named control sections appear
in modules being placed in an overlay structure, the second and any
subsequent control sections with that name are ignored. This occurs whether
the modules are in segments in the same path or in exclusive segments.
Resolution of external references may therefore cause invalid exclusive
references. Invalid exclusive references cause the linkage editor to mark the
output module not executable unless the XCAL option is specified on the
EXEC statement.

An object module deck contains two control sections, READ and WRITE;
member INOUT of library PVTLIB also contains a control section WRITE.

IISYSLMOD DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
II VOLUME=SER=PVT002
IISYSLIN DD *
Object Deck for READ
Object Deck for WRITE

1*

ENTRY
INCLUDE
NAME

READIN
SYSLMOD(INOUT)
INOUT(R)

The output load module contains the new READ control section, the new
WRITE control section (replacing the old WRITE control section in member
INOUT), and all remaining control sections from INOUT.

A large load module named PAYROLL, originally written in COBOL,
contains many control sections. Two control sections, FICA and
ST A TET AX, were recompiled and passed to the linkage editor job step in the
&& OBJECT data set. Then, by including the load module PAYROLL, a
member of the partitioned data set LIBOO 1, as well as the output of the
language translator, the modified control sections automatically replace the
identically named control sections (Figure 18).

Input Modules

&&OBJECT

FICA
(new)

STATETAX
(new)

LlBOOl
(Payroll)

MAIN ROUT

OVERTIME

FICA
(old)

STATETAX
(old)

FEDTAX

ILLACC

VAKTION

IISYSLMOD DD DSNAME=LIB002(PAYROLL),DISP=OLD,
II UNIT=2314,VOLUME=SER=LIB002
IISYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
IIOLDLOAD DD DSNAME=LIB001,DISP=(OLD,DELETE),
II UNIT=2314,VOLUME=SER=LIB001
IISYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
II

INCLUDE
ENTRY

1*

DD *
OLDLOAD(PAYROLL)
INIT1

The output module contains the modified FICA and ST ATETAX control
sections and the rest of the control sections from the old PAYROLL module.
The main entry point is INITl, and the output module is placed in a library
named LIB002. The COBOL automatic call library is used to resolve any
external references that may be unresolved after the SYSLIN data sets are
processed.

JCL and Control Statements

IISYSLMOD
IIOLDLOAD
IISYSLIN
II

INCLUDE
ENTRY

1*

DD DSNAME=LIB002(PAYROLL), ...
DD DSNAME=LIB001, .. .
DD DSNAME=&&OBJECT, .. .
DD *
OLDLOAD(PAYROLL)
INIT1

Output Load Module

LIB 002
(Payroll)

FICA
(new)

STATETAX
(new)

MAIN ROUT

OVERTIME

FEDTAX

ILLACC

VAKTION

Figure 18. Automatic Replacement of Control Sections

Module Editing 61,

REPLACE Statement

62 OS/VS Linkage Editor and Loader

The REPLACE statement is used to replace control sections when the old
and the new control sections have different names. The name of the old
control section appears first, followed by the name of the new control section
in parentheses. The REPLACE statement must immediately precede either
the input module that contains the control section to be replaced, or the
INCLUDE statement that specifies the input module. The scope of the
REPLACE statement is across the immediately following module (object
module or load module). The END record in the immediately following object
module or the End-of-Module indication in the load module terminates the
action of the REPLACE statement.

An external reference to the old control section from within the same input
module is resolved to the new control section. An external reference to the
old control section from any other module becomes an unresolved external
reference unless one of the following occurs:

• The external reference to the old control section is changed to the new
control section with a separate CHANGE control st~tement.

• The same entry name appears in the new control section or in some other
control section in the linkage editor input.

In the following example, the REPLACE statement is used to replace one
control section with another of a different name. Assume that the old control
section SEARCH is in library member TBLESRCH, and that the new control
section BINSRCH is in the data set && OBJECT, which was passed from a
previous step (Figure 19).

IISYSLMOD DD DSNAME=SRCHRTN,DISP=OLD,UNIT=2314,
VOLUME=SER=SRCHLIB
DSNAME=&&OBJECT,DISP=(OLD,DELETE)

II
IISYSLIN
II

1*

ENTRY
REPLACE
INCLUDE
NAME

DD
DD *
READIN
SEARCH(BINSRCH)
SYSLMOD(TBLESRCH)
TBLESRCH(R)

The output module contains BINSRCH instead of SEARCH; any references
to SEARCH within the module refer to BINSRCH. Any external references
to SEARCH from other modules will not be resolved to BINSRCH.

Input Modules

&&OBJECT

BINSRCH

TBLESRCH

F./------r'/
READIN ENTRY

CALL SEARCH

I-------t"'"/
SEARCH

(

JCL and Control Statements

IISYSLMOD
IISYSLIN
II

1*

ENTRY
REPLACE
NAME

DD DSNAME=SRCHRTN, .. .
DD DSNAME=&&OBJECT, .. .
DD *
READIN
SEARCH(BINSRCH)
TBLESRCH(R)

Output Load Module

TBLESRCH

./ ./
READIN ENTRY

CALL BINSRCH

:/
BINSRCH

Figure 19. Replacing a Control Section with the R~PLACE Control Statement

Deleting a Control Section or Entry Name
The REPLACE statement can be used to delete a control section or an entry
name. The REPLACE statement must immediately precede either the module
that contains the control section or entry name to be deleted or the
INCLUDE statement that specifies the module. Only one symbol appears on
the REPLACE statement; the appropriate deletion is made depending on how
the symbol is defined in the module.

If the symbol is a control section name, the entire control section is deleted.
The control section name is deleted from the external symbol dictionary only
if no address constants refer to the name from within the same input module.
If an address constant does refer to it, the control section name is changed to
an external record.

The preceding is also true of an entry name to be deleted. Any references to it
from within the input module cause the entry name to be changed to an
external reference.

These editor-supplied external references, unless resolved with other input
modules, cause the automatic library call mechanism to attempt to resolve
them. Also, the deletion of a control section or an entry name may cause
external references from other input modules to be unresolved. Either
condition can cause the output load module to be marked not executable.

If a deleted control section contains an unresolved external reference, the
reference remains.

Module Editing 63

Note: When a control section is deleted, any CSECT Identification data
associated with that control section is also deleted.

In the following example, control section CODER is to be deleted (Figure
20).

I/SYSLMOD
II
I/SYSLIN

1*

ENTRY
REPLACE
INCLUDE
NAME

DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
VOLUME=SER=PVT002

DD *
START 1
CODER
SYSLMOD(CODEROUT)
CODEROUT(R)

The control section CODER is deleted. If no address constants refer to
CODER from other control sections in the module, the control section name
is also deleted. If address constants refer to CODER, the name is retained as
an external reference.

Ordering Control Sections or Named Common Areas

Input Module

cODEROUT
./ /

ENCODE

./

The sequence of control sections or named common areas in an output load
module can be specified by using the ORDER control statement.

Individual control sections or named common areas are arranged in the output
load module according to the sequence in which they appear on the ORDER
control statement. Multiple ORDER control statements can be used in a job
step. The sequence of the ORDER statements determines the sequence of the
control sections or named common areas in the load module.

Any control sections or named common areas that are not specified on
ORDER statements appear last in the output load module. If a control section
or named common area is changed by a CHANGE or REPLACE control
statement, the new name must be used on the ORDER statement.

In the following example, ORDER statements are used to specify the
sequence of five of the six control sections in an output load module. A
REPLACE statement is used to replace the old control section SESECTA

JCL and Control Statements

IISYSLMOD
IISYSLIN

ENTRY
REPLACE
INCLUDE

DD DSNAME=PVTLIB, ...
DD *
START 1

Output Load Module

CODER OUT
./ ./

ENCODE

CODER

./

-. NAME
1*

CODER
SYSLMOD(CODEROUT)
CODEROUT(R) DECODE

DECODF

Figure 20. Deleting a Control Section

,64 OS/VS Linkage Editor and Loader

Input Modules

&&OBJEC'r

CSECTA

MAINROOT

CSECTB

SESECTA

MAINEP

LASTEP

SEGMTI

SEG2

with the new control section CSECT A from the data set && OBJECT,
which was passed from a previous step. Assume that the control sections to be
ordered are found in library member MAINROOT (Figure 21).

IISYSLMOD DO DSNAME=PVTLIB,DISP=OLD,
II UNIT=2314,VOLUME=SER=PVT002
IISYSLIN DO DSNAME=&&OBJECT,DISP=(OLD,DELETE)
II DO *

ORDER MAINEP(P),SEGMT1,SEG2
REPLACE SESECTA(CSECTA)
ORDER CSECTA,CSECTB(P)
INCLUDE SYSLMOD(MAINROOT)
NAME MAINROOT

1*
In the load module MAINROOT, the control sections MAINEP, SEGMTt,
SEG2, CSECT A, CSECTB are rearranged in the output load module
according to the sequence specified in the ORDER statements. A REPLACE
statement is used to replace the control section SESECT A with control
section CSECT A from the data set &&OBJECT, which was passed from a
previous step. The ORDER statement refers to the new control section
CSECT A. Control section LASTEP appears after the other control sections
in the output load module because it was not included in the ORDER
statement operands.

JCL and Control Statements Output Load Module

MAIN ROOT

OK ./ /"
MAINEP

/
SEGMTI

II EXEC PGM=HEWL,PARM='ALIGN2'

/
SEG2

/'
CSECTA

IISYSLMOD DO DSNAME=PVTLIB, ...
IISYSLIN DO DSNAME=&&OBJECT, ...
II DO *

/
CSECTB

ORDER MAINEP(P),SEGMT1,SEG2
REPLACE SESECTA(CSECTA) 2K
ORDER CSECTA,CSECTB(P)

/ INCLUDE SYSLMOD(MAINROOT)
NAME MAINROOT

1* LASTEP

V

l/

Figure 21. Ordering Control Sections

Module Editing 65

Aligning Control Sections or Named Common Areas on
Page Boundaries

A control section or named common area can be placed on a page boundary
by using either the ORDER statement (with the P operand) or the PAGE
statement. Alignment on a page boundary can be used to effect a lower

I paging rate and thus make more efficient use of real storage. (Note that page
boundary aligning cannot be used for VSl overlay programs.)

66 OS/VS Linkage Editor and Loader

The control section or common area to be aligned is named on either the
PAGE statement or the ORDER statement with the P operand. Either the
PAGE statement or the ORDER statement (with the P operand) causes the
linkage editor to locate the starting address of the control section or common
area on a page boundary within the load module.

The default value for the page boundary is 4K. Under VSl, the ALIGN2
attribute must be specified in the P ARM field of the EXEC statement to
override the default. Because a module using the 2K page boundary alignment
may suffer performance degradation if it is moved from a VS 1 system to a
VS2 system, the 2K page boundary should be used only when virtual storage
is limited.

In the following example, the control sections RAREUSE and MAINRT are
aligned on 2K page boundaries by PAGE and ORDER control statements
used with the ALIGN2 attribute. Control sections CSECTA and SESECTI
are sequenced by the ORDER control statement. Assume that each control
section is 2K in length except for SESECTI and RAREUSE (Figure 22).

IILKED EXEC PGM=HEWL,PARM='ALIGN2, ... '

IISYSLMOD
II
IISYSLIN

1*

DD DSNAME=OWNLIB,DISP=OLD,UNIT=2314,
VOLUME=SER=OWN002

DD *
PAGE RAREUSE
ORDER MAINRT(P),CSECTA,SESECT1
INCLUDE SYSLMOD (MAINROOT)
NAME MAINROOT

The linkage editor places the control sections MAINRT and RAREUSE on
2K page boundaries because ALIGN2 is specified on the EXEC statement.
Control sections MAINRT, CSECTA, and SESECTI are sequenced as
specified in the ORDER statement. RAREUSE, while placed on a 2K page
boundary, appears after the control sections specified in the ORDER
statement because it was not included. The control section BOTTOM comes
after RAREUSE because it appeared after RAREUSE in the input module.

Input Module JCL and Controls Statements Output Load Module

MAIN ROOT MAIN ROOT

L / OK /' /
CSECTA //LKED EXEC PGM=HEWL,PARM='ALIGN2, ...

, ,MAINRT

./ 2K V
RAREUSE //SYSLMOD DD DSNAME=OWNLIB, ... CSECTA

/
SESECTI

./
BOTTOM

//SYSLIN DD *
PAGE RAREUSE
ORDER MAINRT(P),CSECTA,SESECT1

4K INCLUDE SYSLMOD(MAINROOT)
NAME MAINROOT

V
SESECTI

/
/*

./
MAINRT

6K V
RAREUSE

V
BOTTOM

./
/

Figure 22. Aligning Control Sections on Page Boundaries

Overlay Programs 67

OVERLAY PROGRAMS

Ordinarily, when a load module produced by the linkage editor is executed, all
of the control sections of the module remain in virtual storage throughout
execution. The length of the load module is, therefore, the sum of the lengths
of all of the control sections. When storage space is not at a premium, this is
the most efficient way to execute a program. However, if a program
approaches the limits of the virtual storage available, the programmer should
consider using the overlay facilities of the linkage editor.

In most cases, all that is needed to convert an ordinary program to an overlay
program is the addition of control statements to structure the module. The
programmer chooses the overlay able portions of the program, and the system
arranges to load the required portions when needed during execution of the
program.

When the linkage editor overlay facility is requested, the load module is
structured so that, at execution time, certain control sections are loaded only
when referenced. When a reference is made from an executing control section
to another, the system determines whether or not the code required is already
in virtual storage. If it is not, the code is loaded dynamically and may overlay
an unneeded part of the module already in storage.

The rest of this chapter is divided into three sections that describe the design,
specification, and special considerations for overlay programs.

Design of an Overlay Program
The way in which an overlay module is structured depends on the
relationships among the control sections within the module. Two control
sections that do not have to be in storage at the same time can overlay each
other. Such control sections are independent; that is, they do not reference
each other either directly or indirectly. Independent control sections can be
assigned the same load addresses and are loaded only when referenced. For
example, control sections that handle error conditions or unusual data may be
used infrequently, and need not be occupying storage unless in use.

Control sections are grouped into segments. A segment is the smallest
functional unit (one or more control sections) that can be loaded as one
logical entity during execution. The control sections required all of the time
are grouped into a special segment called the root segment. This segment
remains in storage throughout execution of an overlay program.

When a particular segment is to be executed, any segments between it and the
root segment must also be in storage. This is a path. A reference from one
segment to another segment lower in a path is a downward reference. That is,
the segment contains a reference to another segment farther from the root
segment. Conversely, a reference from one segment to another segment
higher in a path (closer to the root segment) is an upward reference.

Therefore, a downward reference may cause overlay because the necessary
segment may not yet be in virtual storage. An upward reference will not cause
overlay because all segments between a segment and the root segment must
be present in storage.

Sometimes several paths need the same control sections. This problem may be
solved by placing the control sections in another region. In an overlay

Overlay Programs 69

structure, a region is a contiguous area of virtual storage within which
segments can be loaded independently of paths in other regions. An overlay
program can be designed in single or multiple regions.

Single /!.egio" Overlay Program

Control Section Dependency

70 OS/VS Linkage Editor and Loader

To design an overlay structure, the programmer should select those control
sections that will receive control at the beginning of execution, plus those that
should always remain in storage; these control sections form the root
segment. The rest of the structure is developed by determining the
dependencies of the remaining control sections and how they can use the
same virtual storage locations at different times during execution.

Besides control section dependency, other topics discussed in this section are
segment dependency, the length of the overlay program, segment origin,
communication between segments, and overlay processing.

Control section dependency is determined by the requirements of a control
section for a given routine in another control section. A control section is
dependent upon any control section from which it receives control, or which
processes its data. For example, if control section C receives control from
control section B, then C is dependent upon B. That is, both control sections
must be in storage before execution can continue beyond a given point in the
program.

A program contains seven control sections, CSA through CSG, and exceeds
the amount of storage available for its execution. Before the program is
rewritten, it is examined to see whether or not it could be placed into an
overlay structure. Figure 23 shows the groups of dependent control sections
in the program (the arrows indicate dependencies).

Each dependent group is also a path. That is, if control section CSG is to be
executed, CSB and CSA must also be in storage. Because CSA and CSB are
in each path, they must be in the root segment. Control section CSC is in two
groups, and therefore is a common segment in two different paths.

A better way to show the relationship between segments is with a tree
structure. A tree is the graphic representation that shows how segments can
use virtual storage at different times. It does not imply the order of execution,
although the root segment is the first to receive control. Figure 24 shows the
tree structure for the dependent groups shown in Figure 23. The structure is
contained in one region, and has five segments.

CSA

CSB

I'

esc

'1'

CSD

CSE

Dependent
Group 1

Figure 23. Control Section Dependencies

CSA CSA

, ,
CSB CSB

~ ~

esc CSG

~ Dependent
Group 3

CSF

Dependent
Group 2

Overlay Programs 71

T
CSA

t Root Segment 1

CSB

I

CSG Segment 5

1
,esc > Segment 2

I
CSD

t >- S,-,gmt-.lt 3

CSE

1 ~
Figure 24. Single-Region Overlay Tree Structure

~ent()ependency

72 OS/VS Linkage Editor and Loader

When a segment is in virtual storage, all segments in its path are also in virtual
storage. Each time a segment is loaded, all segments in its path are loaded if
they are not already in virtual storage. In Figure 24 when segment 3 is in
virtual storage, segments 1 and 2 are also in virtual storage. However, if
segment 2 is in storage, this does not imply that segment 3 or 4 is in virtual
storage since neither segment is in the path of segment 2.

The position of the segments in an overlay tree structure does not imply the
sequence in which the segments are executed. A segment can be loaded and
overlaid as many times as required by the logic of the program. However, a
segment will not be overlaid by itself. If a segment is modified during
execution, that modification remains only until the segment is overlaid.

Length of an Overlay Program

bytes

t
eSE
3,000
byte~

1

Segment 3
7,000 bytes

esc
6,000
bytes

For purposes of illustration, assume that the control sections in the sample
program have the following lengths:

Control Section Length (in bytes)

CSA 3,000

CSB 2,000

esc 6,000

CSD 4,000

CSE 3,000

CSF 6,000

CSG 8,000

If the program were not in overlay, it would require 32,000 bytes of virtual
storage. In overlay, however, the program requires the amount of storage
needed for the longest path. In this structure, the longest path is formed by
segments 1, 2, and 3, since, when they are all in storage, they require 18,000
bytes, as shown in Figure 25.

Note, however, that the length of the longest path is not the minimum
requirement for an overlay program; when a program is in overlay, certain
tables are used, and their storage requirements must also be considered. The
storage required by these tables is given in the section "Special
Considerations. "

Segment 2
6,000 bytes

T
eSA
3,000
bytes

t
eSB
2,000
bytes

CSF
6,000
bytes

1

Root Segment 1
5,000 bytes

Segment 4
6,000 bytes

eSG
8,000

hI
Segment 5
8,000 bytes

Figure 25. Length of an Overlay Module

Overlay Programs 73

Segment Origin

The linkage editor assigns the relocatable origin of the root segment (the
origin of the program) at o. The relative origin of each segment is determined
by 0 plus the length of all segments in the path. For example, the origin of
segments 3 and 4 is equal to 0 plus 6,000 (the length of segment 2).plus
5,000 (the length of the root segment), or 11,000. The origins of all the
segments are as follows:

Segment Origin

0

2 5,000

3 11,000

4 11,000

5 5,000

The segment origin is also called the load point, because it is the relative
location at which the segment is loaded.

Figure 26 shows the segment origin for each segment and the way storage is
used by the sample program. In the illustration, the vertical bars indicate
segment origin; any two segments with the same origin may use the same
storage area. Figure 25 also shows that the longest path is that of segments 1,
2, and 3.

Communication Between Segments

o 1

Root Segment 1
5,000 bytes

2 3

,

I
4 5

Segments that can be in virtual storage simultaneously are considered to be
inc/usive. Segments in the same region but not in the same path are
considered to be exclusive; they cannot be in virtual storage simultaneously.
Figure 27 shows the inclusive and exclusive segments in the sample program.

Segments upon which two or more exclusive segments are dependent are
called common segments. A segment common to two other segments is part of

6

Segment 5
8,000 bytes

Segment 4
6,000 bytes

7 8 9 10 11

Segment 2
6,000 bytes

Segment 3
7,000 bytes

12 13 14 15 16 17 18 19 20

Relative Storage Location (in 1,000 byte increments) _____________ ~

Figure 26. Segment Origin and Use of Storage

74 OS/VS Linkage Editor and Loader

T
Root
Segment 1

I
I

Segment 2

I
I

Segment 4

1

I
segl

t

5 Inclusive Segments

1,2, and 3
1; 2, and 4
1 and 5

Exclusive Segments

2 and 5
3 and 4
3 and 5
4 and 5

Figure 27. Inclusive and Exclusive Segments

the path of each segment. In Figure 27, segment 2 is common to segments 3
and 4, but not to segment 5.

An inclusive reference is a reference between inclusive segments; that is, a
reference from a segment in storage to an external symbol in a segment that
will not cause overlay of the calling segment. An exclusive reference is a
reference between exclusive segments; that is, a reference from a segment in
storage to an external symbol in a segment that will cause overlay of the
calling segment.

Figure 28 shows the difference between an inclusive reference and an
exclusive reference; the arrows indicate references between segments.

Inclusive References: Wherever possible, inclusive references should be used
instead of exclusive references. Inclusive references between segments are
always valid and do not require special options. When inclusive references are
used, there is also less chance for error in structuring the overlay program
correctly.

Exclusive References: An exclusive reference is made when the external
reference in the requesting segment is to a symbol defined in a segment not in
the path of the requesting segment. Exclusive references are either valid or
invalid.

An exclusive reference is valid only if there is also a reference to the
requested control section in a segment common to both the segment to be
loaded and the segment to be overlaid. The same symbol must be used in both
the common segment and the exclusive reference. In Figure 28, a reference
from segment B to segment A is valid, because there is an inclusive reference
from the common segment to segment A. (An entry table in the common
segment contains the address of segment A; the overlay does not destroy this
table.)

In the same illustration, a reference from segment A to segment B is invalid
because there is no reference from the common segment to segment B. A
reference from segment A to segment B can be made valid by including, in

Overlay programs 75

Inclusive
Reference

I
Segment A

Exclusive
Reference

Common Segment

Segment B

Figure 28. Inclusive and Exclusive References

Overlay Process

76 OS/VS Linkage Editor and Loader

the common segment, an external reference to the symbol used in the
exclusive reference to segment B.

Another way to eliminate exclusive references is to arrange the program so
that the references that will cause overlay are made in a higher segment. For
example, the programmer could eliminate the exclusive reference shown in
Figure 28 by writing a new module to be placed in the common segment; the
new module's only function would be to reference segment B. He would then
change the code in segment A to refer to the new module instead of to
segment B. Control then would pass from segment A to the common segment,
where the overlay of segment A by segment B would be initiated.

If either valid or invalid exclusive references appear in the program, the
linkage editor considers them errors unless one of the special options is used.
These options are described later in this section.

Notes:

• During the execution of a program written in a higher level language such
as FORTRAN, COBOL, or PL/I, an exclusive call results in abnormal
termination of the program if the requested segment attempts to return
control directly to the invoking segment that has been overlaid.

• If a program written in COBOL includes a segment that contains a
reference to a COBOL class test or TRANSFORM table, the segment
containing the table must be either (1) in the root segment or (2) a
segment that is higher in the same path than the segment containing the
reference to the table.

The overlay process is initiated during execution of a program only if a
control section in virtual storage references a control section not in storage.
The control program determines the segment that the referenced control
section is in and, if necessary, loads the segment. When a segment is loaded, it
overlays any segment in storage with the same relative origin. Any segments
in storage that are lower in the path of the overlaid segment may also be
overlaid. An exclusive reference can also cause segments higher in the path to

I
esc

t
ENTAB

I
I

CSD

+ Segment 3

CSE

1

be overlaid. If a control section in storage references ~ control section in
another segment already in storage, no overlay occurs.

The portion of the control program that determines when overlay is to occur
is the overlay supervisor, which uses special tables to determine when overlay
is necessary. These tables are generated by the linkage editor, and are part of
the output load module. The special tables are the segment table and the entry
table(s). Figure 29 shows the location of the segment and entry tables in the
sample program.

Because the tables are present in every overlay module, their size must be
considered when planning the use of virtual storage. The storage requirements
for the tables are given in "Special Considerations." A more detailed
discussion of the segment and entry tables follows.

Segment Table: Each overlay program contains one segment table
(SEGTAB); this table is the first control section in the root segment. The
segment table contains information about the relationship of the segments
and regions in the program. During execution, the table also indicates which
segments are either in storage or being loaded, and other control information.

Entry Table: Each segment that is not the last segment in a path may contain
one entry table (ENTAB); this table, when present, is the last control section
in a segment.

When overlay will be required, an entry in the table is created for a symbol to
which control is to be passed, provided (1) the symbol is used as an external

T
SEtAB

CSA

t Root Segment 1

CSB

t
ENTAB

I

I
Segment 2 CSG Segment 5

± } Segment 4

1

Figure 29. Location of Segment and Entry Tables in an Overlay Module

Overlay Programs 77

reference in the requesting segment, and (2) the symbol is defined in another
segment either lower in the path of the requesting segment, or in another
region. An ENT AB entry is not created for any symbol already present in an
entry table closer to the root segment (higher in the path), or for a symbol
defined higher in the path. (A reference to a symbol higher in the path does
not have to go through the control program because no overlay is required.)

If an external reference and the symbol to which it refers are in segments not
in the same path but in the same region, an exclusive reference was made. If
the exclusive reference is valid, an ENT AB entry for the symbol is present in
the common segment. Since the common segment is higher in the path of the
requesting segment, no ENT AB entry is created in the requesting segment.
When the reference is executed, control passes through the ENT AB entry in
the common segment. That is, a branch to the location in the ENT AB causes
the overlay supervisor to be called to load the needed segment or segments.

If the exclusive reference is invalid, no ENT AB entry is present in the
common segment. If the LET option is specified, an invalid exclusive
reference causes unpredictable results when the program is executed. Since no
ENT AB entry exists, control is passed directly to the relative address
specified in the reference, even though the requested segment may not be in
virtual storage.

Multiple Region lherlay Program

78 OS/VS Linkage Editor and Loader

If a control section is used by several segments, it is usually desirable to place
that control section in the root segment. However, the root segment can get
so large that the benefits of overlay are lost. If some of the control sections in
the root segment could overlay each other (except for the requirement that all
segments in a path must be in storage at the same time), the job may be a
candidate for multiple region structure. Multiple region structures can also be
used to increase segment loading efficiency: processing can continue in one
region while the next path to be executed is being loaded into another region.

With multiple regions, a segment has access to segments that are t:J.ot in its
path. Within each region, the rules for single region overlay programs apply,
but the regions are independent of each other. A maximum of four regions
can be used.

Figure 30 shows the relationship between the control sections in the sample
program and two new control sections, CSH and CSI. The two new control
sections are each used by two other control sections in different paths.
Placing CSH and CSI in the root segment makes the segment larger than
necessary because CSH and CSI can overlay each other. The two control
sections should not be duplicated in two paths because the linkage editor
automatically deletes the second pair and an invalid exclusive reference may
then result.

If however, the two control sections are placed in another region, they can be
in virtual storage when needed, regardless of the path being executed in the
first region. Figure 31 shows all of the control sections in a two-region
structure. Either path in region 2 can be in virtual storage regardless of the
path being executed in region 1; segments in region 2 can cause segments in
region 1 to be loaded without being overlaid themselves.

The relative origin of a second region is determined by the length of the
longest path in the first region (18,000 bytes). Region 2, therefore, begins at
o plus 18,000 bytes. The relative origin of a third region would be determined

T
eSA

+ eSB

I

I

esc

I
eSG

I
eSD

1
eSF

eSE

1

Figure 30. Control Sections Used by Several Paths

by the length of the longest path in the first region plus the longest path in the
second region.

The virtual storage required for the program is determined by adding the
lengths of the longest path in each region. In Figure 31, if CSH is 4,000 bytes
and CSI is 3,000 bytes, the storage required is 22,000 bytes, plus the storage
required by the special overlay tables. Care should be exercised when
choosing multiple regions. There may be some system degradation due to the
overlay supervisor being unable to optimize segment loading when multiple
regions are used.

Overlay Programs 79

REGION 1 T
CSA

+ Root Segment 1

CSB

I

esc Segment 2
I

CSG Segment 5

1 CSD

t Segment 3

CSE

------l--------r
REGION 2 I -----------r}----------

CSH

1
Segment 6 CI Segment 7

Figure 31. Overlay Tree for MUltiple-Region Program

Specification of an Overlay Program

80 OS/VS Linkage Editor and Loader

Once the programmer has designed an overlay structure, he or she must place
the module in that structure by indicating to the linkage editor the relative
positions of the segments and regions, and the control sections in each
segment. Positioning is accomplished as follows:

• Segments are positioned by OVERLAY statements. Since segments are
not named, the programmer identifies a segment by giving its origin (or
load point) a symbolic name and then uses that name in an OVERLA Y
statement to specify a symbolic origin. Each OVERLAY statement begins
a new segment.

• Regions are also positioned by OVERLA Y statements. The programmer
specifies the origin of the first segment of the region, followed by the word
REGION in parentheses.

• Control sections are positioned in the segment specified by the
OVERLA Y statement with which they are associated in the input
sequence. However, the sequence of the control sections within a segment
is not necessarily the order in which the control sections are specified.

The input sequence of control statements and control sections should reflect
the sequence of the segments in the overlay structure from top to bottom, left
to right, and region by region. This sequence is illustrated in later examples.

Segment Origin

In addition, several special options are used with overlay programs. These
options are specified on the EXEC statement for the linkage editor job step,
and are described at the end of this section.

Note: If a load module in overlay structure is to be reprocessed by the linkage
editor, the OVERLAY statements and special options (such as OVL Y) must
be respecified. If the statements and options are not provided, the output load
module will not be in overlay structure.

The symbolic origin of every segment, other than the root segment, must be
specified with an OVERLAY statement. The first time a symbolic origin is
specified, a load point is created at the end of the previous segment. That load
point is logically assigned a relative address at the doubleword boundary that
follows the last byte in the preceding segment. Subsequent use of the same
symbolic origin indicates that the next segment is to have its origin at the
same load point.

In the sample single-region program, the symbolic origin names ONE and
TWO are assigned to the two necessary load points, as shown in Figure 31.
Segments 2 and 5 are at load point ONE, segments 3 and 4 are at load point
TWO.

The following sequence of OVERLA Y statements will result in the structure
in Figure 32 (the control sections in each segment are indicated by name):

Control section CSA
Control section CSB
OVERLAY ONE
Control section CSC
OVERLAY TWO
Control section CSD
Control section CSE
OVERLAY TWO
Control section CSF
OVERLAY ONE
Control section CSG

Note that the sequence of OVERLA Y statements reflects the order of
segments in the structure from top to bottom and left to right.

Overlay Programs 81

Root Segment 1

ONE

Segment 2

Segment 5

TWO 1
Segment 3 Segment 4

Region Origi"

82 OS/VS Linkage Editor and Loader

1 1

Figure 32. Symbolic Se"gment Origin in Single-Region Program

The symbolic origin of every region, other than the first, must be specified
with an OVERLA Y statement. Once a new region is specified, a segment
origin from a previous region should not be specified.

In the sample multiple-region program, the symbolic origin THREE is
assigned to region 2, as shown in Figure 33. Segments 6 and 7 are at load
point THREE.

If the following is added to the sequence for the single-region program, the
mUltiple-region structure will be produced:

OVERLAY THREE(REGION)
Control section CSH
OVERLAY THREE
Control section CSI

REGION 1

T
Root Segment 1

ONE

Segment 2

1
I

TWO

Segment 5

1
Segment 4

Segment 3 1

---l------T---------r--REGION 2 THREE

Segment 7

1 Segment 6

1
Figure 33. Symbolic Segment and Region Origin in Multiple-Region Program

Positioning Control Sections

Using Object Decks

After each OVERLA Y statement, the control sections for th~t segment must
be specified. The control sections for a segment can be specified in one of
three ways:

• By placing the object decks for each segment after the appropriate
OVERLA Y statement .

• By using INCLUDE control statements for the modules containing the
control sections for the segment.

• By using INSERT control statements to reposition a control section from
its position in the input stream to a particular segment.

Any control sections that precede the first OVERLA Y statement are placed
in the root segment; they can be repositioned with an INSERT statement.
Control sections from the automatic call library are also placed in the root
segment. The INSERT statement can be used to place these control sections
in another specific segment. Common areas in an overlay program are
described in "Special Considerations."

An example of each of the three methods of positioning control sections
follows. Each example results in the structure for the single-region sample
program. An example is also given of repositioning control sections from the
automatic call library . .

The primary input data set for this example contains an ENTRY statement
and seven object decks, separated by OVERLA Y statements:

Overlay Programs .83

Using INCLUl Statements

Using INSERT Statements

;84 OS/VS Linkage Editor and Loader

//LKED EXEC PGM=HEWL,PARM='OVLY'

//SYSLIN DD *
ENTRY BEGIN

Object deck for CSA
Object deck for CSB

OVERLAY ONE
Object deck for esc

OVERLAY TWO
Object deck for CSD
Object deck for CSE

OVERLAY TWO
Object deck for CSF

OVERLAY ONE
Object deck for CSG

/*

The EXEC statement illustrates that the OVL Y parameter must be specified
for every overlay program to be processed by the linkage editor.

The primary input data set for this example contains a series of control
statements. The INCLUDE statements in the primary input data set direct the
linkage editor to library members that contain the control sections of the
program.

//LKED EXEC PGM=HEWL,PARM='OVLY'

//MODLIB DD DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
//SYSLIN DD *

ENTRY BEGIN
INCLUDE'MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)
OVERLAY TWO
INCLUDE MODLIB(CSD,CSE)
OVERLAY TWO
INCLUDE MODLIB(CSF)
OVERLAY ONE
INCLUDE MODLIB(CSG)

/*

This example differs from the previous one in that the control sections of the
program are not part' of the primary input data set, but are represented in the
primary input by the INCLUDE statements. When an INCLUDE statement
is processed, the appropriate control section is retrieved from the library and
processed.

When INSERT statements are used, the INSERT and OVERLAY statements
may either follow or precede all the input modules. However, the order of the
control sections in a segment is not necessarily the same as the order of the
INSERT statements for each segment. An example of each is given, as well as
an example of repositioning automatically called control sections.

FoDowing AU Input: The control statements can follow all the input modules,
as shown in the following example:

IILKED EXEC PGM=HEWL,PARM='OVLY,

IISYSLIN DD DSNAME=OBJECT,DISP=(OLD,KEEP), ...
II DD *

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG

1*
The primary input data set contains the object modules for the control
sections, and the input stream is concatenated to it.

Preceding AD Input: The control statements can also precede all input
modules, as shown in the follO,wing example:

EXEC PGM=HEWL,PARM='OVLY' IILKED
IIMODULES DD DSNAME=OBJSEQ,DISP={OLD,KEEP), ...

IISYSLIN DD *

1*

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
INCLUDE MODULES

The primary input data set contains all of the control statements for the
overlay structure and an INCLUDE statement. The data set specified by the
INCLUDE statement contains all of the object modules for the structure, and
is a sequential data set.

Repositioning AutomaticaUy CaUed Control Sections: The INSERT statement
can also be used to move automatically called control sections from the root
segment to the desired segment. This is helpful when control sections from
the automatic call library are used in only one segment. By moving such
control sections, the root segment will contain only those control sections
used by more than one segment.

When a program is written in a higher level language, special control sections
are called from the automatic call library . Assume that the sample program is
written in COBOL and that two control sections (ILBOVTRO and
ILBOSCHO) are called automatically from SYSl.COBLIB. Ordinarily, these
control sections are placed in the root segment. However, INSERT statements
are used in the following example to place these control sections in segments
other than the root segment.

Overlay Programs 8S

Specilll Options

OVLYOption

LET Option

86 OS/VS Linkage Editor and Loader

//LKED
//MODLIB
//SYSLIB

EXEC
DD .
DD

PGM=HEWL,PARM='OVLY'
DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
DSNAME=SYS1.COBLIB,DISP=SHR

//SYSLIN DD *
ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)
OVERLAY TWO
INCLUDE MODLIB(CSD,CSE)
INSERT ILBOVTRO
OVERLAY TWO
INCLUDE MODLIB(CSF)
INSERT ILBOSCHO
OVERLAY ONE
INCLUDE MODLIB(CSG)

/*

As a result, segments 3 and 4 will also contain ILBOVTRO and ILBOSCHO,
respectively.

This example also combines two of the ways of specifying the control sections
for a segment.

The linkage editor provides three special job step options for the overlay
programmer. These options are specified on the EXEC statement for the
linkage editor job step. They must be specified each time a load module in
overlay structure is reprocessed by the linkage editor. The three options are
OVLY, LET, and XCAL.

The OVL Y option must be specified for every overlay program. If the option
is omitted, all the OVERLAY and INSERT statements are considered invalid.
The output module is marked not executable unless the LET option is
specified. The output module is not in an overlay structure.

With the LET option, the output module is marked executable even though
certain error conditions were found during linkage editor processing. When
LET is specified, any exclusive reference (valid or invalid) is accepted. At
execution time, a valid exclusive reference is executed correctly; an invalid
exclusive reference usually causes unpredictable results.

Also with the LET option, unresolved external references do not prevent the
module from being marked executable. This could be helpful when part of a
large program is ready for testing; the segments to be tested may contain
references to segments not yet coded. If LET is specified, the program can be
executed to test those parts that are finished (as long as the references to the
absent segments are not executed). If the LET option is not specified, these
unresolved references will cause the module to be marked not executable.

XCALOption

Special Considerations

Common A.reas

With the XCAL option, a valid exclusive call is not conSh ,d an error, and
the load module is marked executable. However, other errors could cause the
module to be marked not executable, unless the LET option is specified; in
this case, the XCAL option is not required.

This section discusses several special considerations that affect overlay
programs. These considerations include the handling of common areas, special
storage requirements, and overlay communication.

When common areas (blank or named) are encountered in an overlay
program, the common areas are collected as described previously (i.e., the
largest blank or identically named common area is used). The final location of
the common area in the output module depends on whether INSERT
statements were used to structure the program.

If INSERT statements are used to structure the overlay program, a named
common area should either be part of the input stream in the segment to
which it belongs, or should be placed there with an INSERT statement.

Because INSERT statements cannot be used for blank common areas, a blank
common area should always be part of the input stream in the segment to
which it belongs.

If INSERT statements are not used, and the control sections for each segment
are placed or included between OVERLAY statements, the linkage editor
"promotes" the common area automatically. That is, the common area is
placed in the common segment of the paths that contain references to it so
that the common area is in storage when needed. The position of the
promoted area in relation to other control sections within the common
segment is unpredictable.

If a common area is encountered in a module from the automatic call library,
automatic promotion places the common area in the root segment. In the case
of a named common area, this may be overridden by use of the INSERT
statement.

Assume that the sample program is written in FORTRAN and that common
areas are present as shown in Figure 34. Further assume that the overlay
program is structured with INCLUDE statements between the OVERLA Y
statements so that automatic promotion occurs.

Segments 2 and 5 contain blank common areas, segments 3 and 4 contain .
named common area A, and segments 4 and 5 contain named common area
B.During linkage editor processing, the blank common areas are collected
and the largest area is promoted to the root segment (the first common
segment in the two paths); the common areas named A are collected and the
largest area is promoted to segment 2; the common areas named Bare
collected and promoted to the root segment. Figure 35 shows the location of
the common areas after processing by the linkage editor.

Overlay Programs 87

T
eSA

+ Root Segment 1

eSB
I

I
Blank Common

t Segment 2

I
Blank Common

t
eSG

Segment 5

esc

I
I I

+ Named Common B
..L

Named Common A Named Common A

+ eSD

t
eSE

Segment 3
t e S F Segment 4

t
1

Named Common B

.1.

Figure 34. Common Areas before Processing

88 OS/VS Linkage Editor and Loader

T
CSA

+
CSB

t Root Segment 1

Blank Common

-+-
Named Common B

I
esc

t
I

Segment 2

I
CSG

1
Segment 5

CSD

t Segment 3
C S F Segment 4

1 CSE

1
Figure 35. Common Areas after Processing

Storage Requirements

The virtual storage requirements for an overlay program include the items
placed in the module by the linkage editor and the overlay supervisor
necessary for execution.

Items in the Load Module: The items that the linkage editor places in an
overlay load module are the segment table, entry tables, and other control
information. Their size must be included in the minimum requirements for an
overlay program, along with the storage required by the longest path and any
control sections from the automatic call library .

Every overlay program has one segment table in the root segment. The
storage requirements are:

SEGTAB = 4n + 24

where:

n = the number of segments in the program

Overlay Programs 89

Overlay Communication

90 OS/VS Linkage Editor and Loader

Some segments will have an entry table. The requirements of the entry tables
in the segments in the longest path mllst be added to the storage requirements
for the program. The requirements for an entry table are:

ENTAB = 12(x + 1)

where:

x = the number of entries in the table

Finally, a NOTE list is required to execute an overlay program. The storage
requirements are:

NOTELST = 4n + 8

where:

n = the number of segments in the program

Overlay Supervisor: To the minimu~requirements of the load module itself
must be added the requirements of the overlay supervisor. This system routine
is not placed in an overlay module, but, during execution of the module, the
supervisor may be called to initiate an overlay. If called, the storage allocated
for the program must be large enough for the supervisor also.

Three overlay supervisor modules are furnished with the system: the basic,
advanced, and asychronous modules. The basic module does does not test
whether a request for overlay is valid; the other two do. Neither the basic nor
advanced modules permit overlay through the SEGLD macro instruction (see
"Overlay Communication"); the asynchronous module does. When the
SEGLD macro instruction is used with the basic and advanced modules, it is
ignored. The storage requirements for the overlay supervisor modules are:

Module

Basic (used with VS 1)

Advanced (used with VS 1)

Asynchronous (used with VS2)

Storage Requirements (in bytes)

436

512

992

Several ways of communicating between segments of an overlay program are
discussed in this section. A higher level or Assembler language program may
use a CALL statement or CALL macro iristruction, respectively, to cause
control to be passed to a symbol defined in another segment. The CALL may
cause the segment to be loaded if it is not already present in storage. An
Assembler language program may also use three additional ways to
communicate between segments:

• By a branch instruction, which causes a segment to be loaded and control
to be passed to a symbol defined in that segment.

• By a segment load (SEGLD) macro instruction (VS2 only), which requests
loading of a segment. Processing continues in the requesting segment while
the requested segment is being loaded.

• By a segment load and wait (SEGWT) macro instruction, which requests
loading of a segment. Processing continues in the requesting segment only
after the requested segment is loaded.

Any of the four methods may be used to make inclusive references. Only the
CALL and branch may be used to make exclusive references. Neither the
SEGLD nor SEGWT macro.isntruction should be used to make exclusive

references; since both imply that processing is to continue in the requesting
segment, an exclusive reference leads to erroneous results when the program
is executed.

CALL Statement or CALL Macro Instruction

Branch Instruction

A CALL statement or CALL macro instruction refers to an external name in
the segment to which control is to be passed. The external name must be
defined as an external reference in the requesting segment. In Assembler
language, the name must be defined as a four-byte V -type address constant;
the high-order byte is reserved for use by the control program, and must not
be altered during execution of the program.

When a CALL is used, the requested segment and any segments in its path
are loaded if they are not part of the path already in virtual storage. After the
segment is loaded, control is passed to the requested segment at the location
specified by the external name.

A CALL between inclusive segments is always valid. A return can be made to
the requesting segment by another source language statement, such as
RETURN. A CALL between exclusive segments is valid if the conditions for
a valid exclusive reference are met; a return from the requested segment can
be made only by another exclusive reference, because the requesting segment
has been overlaid.

Any of the branching conventions shown in Figure 36 can be used to request
loading and branching to a segment. As a result, the requested segment and
any segments in its path are loaded if they are not part of the path already in
virtual storage. Control is then passed to the requested segment at the
location specified by the address constant placed in general register 15.

The address constant must be a 4-byte V-type address constant. The
high-order byte is reserved for use by the control program, and must not be
altered during execution of the program.

A branch between inclusive segments is always valid; a return may be made
by means of the address stored in Rn. A branch betweeen exclusive segments
is valid if the conditions for a valid exclusive reference are met; a return can
be made only by another exclusive reference.

Overlay Programs 91

Example Name1 Operation Operand2,3

L RI5,=V(name)
BALR Rn,RI5

2 L RI5,ADCON
BALR Rn,RI5

ADCON DC V(name)

3 L RI5,=V(name)
BAL Rn,O(O,R 15)4

4 L RI5,=V(name)
BAL Rn,O(RI5)5

56 L RI5,=V(name)
BCR 15,R15

66 L RI5,=V(name)
BC 15,O(O,R15)4

76 L R15,=V(name)
BC 15,O(R15)5

1 When the name field is blank, specification of a name is optional.

2 R15 is the register into which is loaded a 4-byte address constant that is an entry name or a control section
name in the requested segment. The address constant must be loaded into the standard entry point register,
register 15.

3 Rn is any other register and is used to hold the return address. This register is usually register 14.

4 This may also be written so that the index register is loaded with the address constant; the other fields must
be zero.

5 In this format, the base register must be loaded with the address constant; the displacement must be zero.

6 This example is an unconditional branch; other conditions are also allowed.

Figure 36. Branch Sequences for Overlay Programs

Segment Load (SEGLD) Macro Instruction

92 OS/VS Linkage Editor and Loader

The SEGLD macro instruction is used to provide overlap between segment
loading and processing within the requesting segment. As a result of using any
of the examples in Figure 37, the loading of the requested segment and any
segments in its path is initiated when they are not part of the path already in
virtual storage. Processing then resumes at the next sequential instruction in
the requesting segment while the segment or segments are being loaded.
Control may be passed to the requested segment with either a CALL or a
branch, as shown in examples 1 and 2, respectively. A SEGWT instruction
can be used to ensure that the data in the control section specified by the
external name is in virtual storage before processing begins, as shown in
Example 3.

The external names specified in the SEGLD macro instruction must be
defined with a 4-byte V -type address constant. The high-order byte is
reserved for use by the control program and must not be altered during
execution of the program.

Note: Some configurations of the control program do not have the capability
of processing the SEGLD macro instruction. When used, the macro
instruction is treated as a NOP (no operation) and the segment is loaded
when a SEGWT macro instruction or a branch is executed. If the rules of
overlay are followed, correct execution occurs.

Example Name1

2

3

1 When the

Operation

SEGLD
CALL

SEGLD
branch

SEGLD

SEGWT
L

name field is blank, specification of a name is optional.

2 External name is an entry name
or a control section name in the requested segment.

3 Rn is any other
register and is used to hold the return address. This register is

usually register l4.

Figure 37. Use of the SEGLD Macro Instruction

Segment Wait (SEGWT) Macro Instruction

Operand2,3

external name
external name

external name

external name

external name
Rn,=A(name)

The SEGWT macro instruction is used to stop processing in the requesting
segment until the requested segment is in virtual storage.

As a result of using any of the examples in Figure 38, no further processing
takes place until the requested segment and all segments in its path are loaded
when not already in virtual storage. Processing resumes at the next sequential
instruction in the requesting segment after the requested segment has been
loaded.

Example Name l Operation Operand2,3

SEGLD external name

SEGWT external name
L Rn,ADCON

branch
AD CON DC A(name)

2 SEGWT external name
L Rn,=A(name)

1 When the name field is blank, specification of a name is optional.

2 External name is an entry name or a control section name in the requested segment.

3 Rn is any other register and is used to hold the return address. This register is usually register 14.

Figure 38. Use of the SEGWT Macro Instruction

If the SEG WT and SEG LD macro instructions are used together, overlap
occurs between processing and segment loading; use of the SEGWT macro
instruction serves as a check to see that the necessary information is in
storage when it is finally needed (see Example 1 in Figure 38). In Example 2
in Figure 38, no overlap is provided; the SEGWT macro instruction initiates
loading, and processing is stopped in the requesting segment until the
requested segment is in virtual storage.

The external name specified in the SEGWT macro instruction must be
defined with a 4-byte V -type address constant. The high-order byte is
reserved for use by the control program, and must not be altered during
execution of the program.

If the contents of a virtual storage location in the requested segment are to be
processed, the entry name of the location must be referred to by an A-type
address constant.

Overlay Programs 93

JOBCONTROLLANGUAGESUM~Y

This chapter summarizes those aspects of the job control language that
pertain directly to the use of the linkage editor. The major topics covered are
the EXEC statement, DD statements, and cataloged procedures for the
linkage editor. The reader should be familiar with the job control language as
described in OS/VSI JCL Reference or OS/VS2 JCL.

EXEC Statement-Introduction
The EXEC statement is the first statement of every job step. For the linkage
editor job step, the following topics are pertinent:

• The program name of the linkage editor.

• Linkage editor options passed to the job step .

• Region requirements for the linkage editor.

For an execution job step following the linkage editor job step, the linkage
editor return code is important.

The EXEC statement contains the symbolic name of the load module to be
invoked for execution. The linkage editor can be invoked with the following
program name:

HEWL

LINKEDIT is an alias name for the linkage editor and can also be used to
invoke it.

For example, the following EXEC statement causes the linkage editor to be
invoked:

//LKED . EXEC PGM=HEWL

PGM=LINKEDIT could also be used.

To ensure compatibility with the operating system, the linkage editor can also
be invoked by any of the following alias names: IEWL,IEWLF440,
IEWLF880,IEWLF128.

EXEC Statement-Job Step Options
The EXEC statement also contains a list of options or parameters to be
passed to the linkage editor. These options are of four types:

• Module attributes, which describe the characteristics of the output load
module.

• Special processing options, which affect linkage editor processing.

• Space allocation options, which affect the amount of storage used by the
linkage editor for processing and output module library buffers.

• Output options, which specify the kind of output the linkage editor is to
produce.

The rest of this section describes the options in each category. All of the
options for a particular linkage editor execution are listed in the PARM
parameter on the EXEC statement. They can be listed in any sequence, as
long as the rules for coding parameters are followed.

Job Control Language Summary 95

Module Attributes

Downward Compatible Attribute

Hierarchy Format Attribute

96 OS/VS Linkage Editor and Loader

The module attributes describe the characteristics of the output module, or
modules. (If more than one load module is produced by the same linkage
editor job step, all output modules will have the attributes assigned on the
EXEC statement.) The attributes for each load module are stored in the
directory of the output module library along with the member name. (The
format of the directory entry of a partitioned data set is given in OS/VSl
System Data Areas and OS/VS2 Data Areas.

Module attributes specify whether or not the module:

• Can ever be processed by the linkage editor.

• Can be brought into virtual storage only by the LOAD macro instruction.

• Is to be in overlay format.

• Can be reused.

• Can be placed in the link pack area; that is, is re-enterable.

• Can be replaced during execution by recovery management; that is, is
refreshable.

• Is to be tested by the TSO TEST command under VS2.

• Is to have specified control sections aligned on page boundaries.

• Is or is not authorized to use the restricted system resources and functions.

After the descriptions of the module attributes, the default and incompatible
attributes are discussed.

When this attribute is specified, a maximum record size of 1024 bytes is used
for the output module library.

To assign the downward compatible attribute, code DC in the PARM field as
follows:

//LKED EXEC PGM=IEWL,PARM='DC, ... '

Note: If the DC attribute is specified and the output load module library is a
data set created by the link-edit job step, the blocksize in the DSCB (data set
control block) is set to 1024. If the DC attribute is specified and the output
load module library is an existing data set, then the blocksize in the DSCB is
set to 1024 only if the current blocksize in the DSCB is less than 1024; if the
current blocksize in the DSCB is greater than 1024, the load module is
written using a maximum record size of 1024 bytes but the blocksize in the
DSCB is not changed.

Although VS systems do not provide hierarchy support, the HIAR attribute is
included in the linkage editor for compatibility with OS systems. If the HIAR
attribute is specified and the module is link-edited under VS, the module will
run on either OS or VS but the attribute will be ignored when fetching the
load module on VS systems.

Control sections within a module with the hierarchy format attribute are
suitable for either block or scatter loading into the hierarchies specified in
HIARCHY control statements. Specification of hierarchy format, when main
storage hierarchy support is included in the system, allows the programmer to

Scatter Fonnat Attribute

make use of both processor storage (hierarchy 0) and IBM 2361 Core
Storage (hierarchy 1). When main storage hierarchy support is not included in
the system, programs with the hierarchy format attribute are block or scatter
loaded into processor storage (see "Scatter Format").

When storage hierarchies are used, all control sections assigned to a hierarchy
are normally block loaded. If the allocated region within the hierarchy is not
large enough for block loading of the control sections, and the scatter loading
feature is available, the control sections may be scatter loaded into the
allocated area within the hierarchy.

The hierarchy format attribute overrides the scatter format attribute; the
overlay attribute overrides the hierarchy format attribute and must be omitted
if hierarchies are to be assigned.

To assign the hierarchy format attribute, code HIAR in the P ARM field, as
follows:

//LKED EXEC PGM=IEWL,PARM='HIAR, ... '

See the description of the HIARCHY control statement for information on
assigning control sections to a specific hierarchy.

Note: Because control sections may be scatter loaded when HIAR is
specified, the programmer should ensure that the load module does not
contain zero-length control sections, private code sections, or common areas.
The presence of such sections in a module that is to be scatter loaded can,
under certain circumstances, cause Program Fetch to terminate abnormally
when the module is loaded into main storage for execution.

A module with the scatter format attribute need not be loaded into a
contiguous block of main storage; rather, the programmer can specify the
dynamic loading of control sections into noncontiguous, or scattered, areas
within his assigned main storage area. Although scatter loading can also be
left to the control program, the programmer should specify the loading
process himself for most effective use of available storage. If the scatter
format attribute is not specified, the linkage editor produces a load module in
a format suitable for block loading. That is, the control program can load the
module only into one contiguous main storage area large enough to contain
the complete module.

When the scatter format attribute is specified, the linkage editor produces a
load module in a format suitable for either scatter or block loading. If the
scatter load feature is not available in the control program, modules with the
scatter format attribute are block loaded.

To assign the scatter format attribute, code SCTR in the P ARM field, as
follows:

//LKED

Notes:

EXEC PGM=IEWL,PARM='SCTR, ... '

• The block format attribute is assigned by the linkage editor if scatter
format is not specified. (The programmer cannot specify block format.)

• If SCTR is specified, the programmer should ensure that the load module
does not contain zero-length control sections, private code sections, or
common areas. The presence of such sections in a module that is to be
scatter loaded can, under certain circumstances, cause Program Fetch to

Job Control Language Summary 97

Not Editable Attribute

Only Loadable Attribute

Overlay Attribute

terminate abnormally when the module is loaded into main storage for
execution.

• The SCTR attribute must be specified when the nucleus for a VS system is
link-edited. In all other instances, if the SCTR attribute is specified, the
linkage editor builds the output load module appropriately; however,
scatter load support is not provided in the VS systems and the
attribute/load module format is ignored when fetching the load module.

A load module which is marked NE (not editable) is not reprocessable by the
linkage editor. If a module map or a cross-reference table is requested, the not
editable attribute is ignored.

To assign the not editable attribute, code NE in the P ARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='NE, ... '

Note: The not editable attribute disables the EXPAND function for the
output load module and also limits to eighteen the number of consecutive
iterations of AMASPZAP (for VS2) or HMASPZAP (for VSl). If the
EXPAND function is reqJlired or more than eighteen iterations of
AMASPZAP /HMASPZAP are required, the load module will have to be
recreated.

A module with the only loadable attribute can be brought into virtual storage
only with a LOAD macro instruction. Some subsets of the control program
use a smaller control table when the load module is invoked with a LOAD.
This reduces the overall virtual storage requirements of the module.

A module with the only loadable attribute must be entered by means of a
branch instruction or a CALL macro instruction. If an attempt is made to
enter the module with a LINK, XCTL, or ATTACH macro instruction, the
program making the attempt is terminated abnormally by the control
program.

To assign the only load able attribute, code OL in the P ARM field as follows:

//LKED EXEC PGM=HEWL,PARM='OL, ... '

A program with the overlay attribute is placed in an overlay structure as
directed by the linkage editor OVERLA Y control statements. The module is
suitable only for block loading; it cannot be refreshable, re-enterable, serially
reusable, or assigned to hierarchies.

If the overlay attribute is specified and no OVERLAY control statements are
found in the linkage editor input, the attribute is negated. The condition is
considered a recoverable error; that is, if the LET option is specified, the
module is marked executable.

The overlay attribute must be specified for overlay processing. If this attribute
is omitted, the OVERLAY and INSERT statements are considered invalid,
and the module is not an overlay structure. This condition is also recoverable;
if the LET option is specified, the module is marked executable.

98 OS/VS Linkage Editor and Loader

Reusability Attnbutes

To assign the overlay attribute, code OVL Y in the P ARM field as
follows:

//LKED EXEC PGM=HEWL,PARM='QVLY, ... '

See "Overlay Programs" for information on the design and specification of an
overlay structure.

Either one of two attributes may be specified to denote the reusability of a
module. Reusability means that the same copy of a load module can be used
by more than one task either concurrently or one at a time. The reusability
attributes are re-enterable and serially reusable; if neither is specified, the
module is not reusable and a fresh copy must be brought into virtual storage
before another task can use the module.

The linkage editor only stores the attribute in the directory entry; it does not
check whether the module is really re-enterable or serially reusable. A
re-enterable module is automatically assigned the reusable attribute.
However, a reusable module is not also defined as re-enterable; it is reusable
only.

Re-enterable: A module with the re-enterable attribute can be executed by
more than one task at a time; that is, a task may begin executing a
re-enterable module before a previous task has finished executing it. This type
of module cannot be modified by itself or by any other module during
execution.

If a module is to be re-enterable, all of the control sections within the module
must be re-enterable. If the re-enterable attribute is specified, and any load
modules that are not re-enterable become a part of the input to the linkage
editor, the attribute is negated.

To assign the re-enterable attribute, code RENT in the P ARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='RENT, ... '

SeriaUy Reusable: A module with the serially reusable attribute can be
executed by only one task at a time; that is, a task may not begin executing a
serially reusable module before a previous task has finished executing it. This
type of module must initialize itself and/or restore any instructions or data in
the module altered during execution.

If a module is to be serially reusable, all of its control sections must be either
serially reusable or re-enterable. If the serially reusable attribure is specified,
and any load modules that are neither serially reusable nor re-enterable
become a part of the input to the linkage editor, the serially reusable attribute
is negated.

To assign the serially reusable attribute, code REUS in the P ARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='REUS, ... '

Job Control Language Summary 99

Refresbable Attribute

Test Attribute

Page Boundary Attribute

A module with the refreshable attribute can be replaced by a new copy during
execution by a recovery management routine without changing either the
sequence or results of processing. This type of module cannot be modified by
itself or by any other module during execution. The linkage editor only stores
the attribute in the directory entry; it does not check whether the module is
refreshable.

If a module is to be refreshable, all of the control sections within it must be
refreshable. If the refreshable attribute is specified, and any load modules that
are not refreshable become a part of the input to the linkage editor, the
attribute is negated.

To assign the refreshable attribute, code REFR in the P ARM field, as
follows:

//LKED EXEC PGM=HEWL, PARM=' REFR, ... '

A module with the test attribute is to be tested and contains the testing
symbol tables for the TSO TEST command. The linkage editor accepts these
tables as input, and places them in the output module. The module is marked
as being under test. If the test attribute is not specified, the symbol tables are
ignored by the linkage editor and are not placed in the output module. If the
test attribute is specified, and no symbol table input is received, the output
load module will not contain symbol tables to be used by the TSO TEST
command.

To assign the test attribute, code TEST in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='TEST, ... '

Note: The test attribute applies to programs using TESTRAN or the TSO
TEST command. Do not use the 'TEST' option unless the load module -is to
be executed by TSO or TESTRAN.

Control sections within a load module with the page boundary attribute are
aligned in storage on page boundaries. Used with the PAGE control
statement or the ORDER statement with the P operand, this attribute causes
alignment of specified control sections on 2K boundaries. If virtual storage is
limited under VS 1, alignment on 2K page boundaries reduces paging and
conserves storage; however, performance degradation may result when 2K
alignment is used under VS2.

To assign the 2K page boundary attribute, code ALIGN2 in the P ARM field,
as follows:

//LKED

Notes:

EXEC PGM=HEWL,PARM='ALIGN2, ... '

• If the ALIGN2 attribute is not coded and the PAGE statement or ORDER
statement with the P operand is used, the default boundary alignment is
4K.

/. Page boundary aligning cannot be used for VS 1 overlay programs.

100 OS/VS Linkage Editor and Loader

Authorization Code

Default Attributes

Incompatible Attributes

Special Processing Options

Exclusive CaD Option

The output load module is assigned an authorization code which determines
whether or not the load module may use restricted system services and
resources.

To assign an authorization code through the P ARM field, code the AC
parameter as follows:

//LKED EXEC PGM=HEWL,PARM='AC=n, ... '

The authorization code n must be 1 to 8 decimal digits giving a value from 0
to 255.

'AC=', 'AC=, ... ' and 'AC= ' are equivalent to 'AC=O'. The authorization
code assigned in the P ARM field is overridden by an authorization code
assigned through the SETCODE control statement.

Unless specific module attributes are indicated by the programmer, the output
module is not in an overlay structure, and it is not tested (assembler only).
The module is in block format, not refreshable, not re-enterable, and not
serially reusable. Its control sections are aligned on 4K page boundaries if
page boundary alignment is requested.

One other attribute is specified by the linkage editor after processing is
finished. If, during processing, severity 2 errors were found that would
prevent the output module from being executed successfully, the linkage
editor assigns the not executable attribute. The control program will not load
a module with this attribute.

If the LET option is specified, the output module is marked executable even if
severity 2 errors occur. The LET option is discussed later in this section.

If the AC parameter is not specified or is coded incorrectly, the default
authorization code of zero (0) is assigned to the output load module.

Of the module attributes that the programmer may specify, several are
mutually exclusive. When mutually exclusive attributes are specified for a load
module, the linkage editor ignores the less significant attributes. For example,
if both OVL Y and RENT are specified, the module will be in an overlay
structure and will not be re-enterable.

Certain attributes are also incompatible with other job step options. For
convenience, all job step options are shown in Figure 41 at the end of this
chapter along with those options that are incompatible.

The special processing options affect the executability of the output module
and the use of the automatic library call mechanism. These options are the
exclusive call option, the let execute option, and the no automatic call option.

When the exclusive call option is specified, the linkage editor marks the
output module as executable when valid exclusive references have been made
between segments. However, a warning message is given for each valid
exclusive reference.

Job Control Language Summary 101

Let Execute Option

No Automatic Library Call Option

Space Allocation Options

SIZE . Option

To specify the exclusive call option, code XCAL in the PARM field as
follows:

I/LKED EXEC PGM=HEWL,PARM='XCAL,OVLY, ... '

The OVL Y attribute must also be specified for an overlay program.

Note: Other errors may cause the module to be marked not executable unless
the let execute option is specified.

When the let execute option is specified, the linkage editor marks the output
module as executable even though a severity 2 error condition was found
during processing. (A severity 2 error condition could make execution of the
output load module impossible.) Some examples of severity 2 errors are:

• Unresolved external references.

• Valid or invalid exclusive calls in an overlay program.

• Error on a linkage editor control statement.

• A library module that cannot be found.

• No available space in the directory of the output module library.

To specify the let execute option, code LET in the P ARM field as follows:

//LKED EXEC PGM=HEWL,PARM='LET, ... '

Note: If LET is specified, XCAL need not be specified.

When the no automatic library call option is specified, the linkage editor
library call mechanism does not call library members to resolve external
references. The output module is marked executable even though unresolved
external references are present. If this option is specified, the LIBRARY
statement need not be used to negate the automatic library call for selected
external references. Also, with this option, a SYSLIB DD statement need not
be supplied.

To specify the no automatic library call option, code NCAL in the P ARM
field, as follows:

//LKED EXEC PARM=HEWL,PARM='NCAL, ... '

Note: Other errors may cause the module to be marked not executable unless
the LET option is also specified~

These options allow the programmer to specify the storage available to the
linkage editor, and to specify the blocksize for the output module.

The programmer can specify, through the SIZE option, the amount of virtual
storage to be used by the level F linkage editor and the portion of that storage
to be used as the load module buffer.

Default values for the SIZE option are chosen during system generation. The
default values are used if one or both of the values are not specified correctly,
or not specified at all. These defaults should be made adequate for most link
edits, relieving the programmer from having to specify the SIZE option for

102 OS/VS Linkage Editor and Loader

each link edit. For details on how to establish default values for VS 1, see the
EDITOR macro in OS/VSI System Generation Reference. The default
values for VS2 are: value 1 is 192K and value2 is 64 K.

Format: The format of the SIZE option is:

SIZE=(valuel ,value2)

SIZE=(valuel)

SIZE=(valuel ,)

SIZE=(, value2)

SIZE=(,)

When coded in the P ARM field, the expression is enclosed in single quotes, as
follows:

IILKED
II

EXEC PGM=HEWL,
PARM='SIZE=(valuel,value2), ... '

Both value 1 and value2 may be expressed as integers specifying the number
of bytes of virtual storage or as nK where n represents the number of 1 K
(1024) bytes of virtual storage.

When determining the values for the SIZE option, it is best to establish value2
first, then value 1.

Value2: Value2 specifies the number of bytes of storage to be allocated as
the module buffer. The allocation specified by value2 is a part of the virtual
storage specified by value 1.

The actual minimum for value2 is 6144 (6K) or the length of the largest input
load module text record, whichever is larger. If a value less than 6144 (6K) is
specified, the default value for value2 is used.

The space allocated by value2 is used as: the buffer into which the input load
module text is read, the buffer from which load module text is written to the
intermediate data set, the buffer into which the load module text is read from
the intermediate data set, and the buffers from which the load module text is
written to the output data set. Therefore the determination of value2 requires
that the programmer consider the record sizes of the data sets from which any
load module text records are to be read (SYSLIB, any data set referenced by
an INCLUDE, any library data set), the record sizlfor the intermediate data
set (SYSUTl), and the record size for the output load module data set
(SYSLMOD).

Figure 39 lists the direct access devices that may contain data sets that are the
source of input load module text, the intermediate data set, and the output
load module data set, and lists the maximum record size used for each device
by the linkage editor. These maximum record sizes may always be used in
specifying value2 or, if the programmer can determine them, exact sizes can
be used.

The programmer must specify value2 so that the linkage editor has sufficient
space to allocate buffers that are compatible with the record sizes for the
intermediate data set and the output load module data set.

The linkage editor optimizes the record size for the device type of output load

Job Control Language Summary 103

Device Maximum Record Size (Bytes) Maximum Record Size (K Bytes)

2305-1 14136 13

2305-2 14660 14

2314 7294 6

2319 7294 6

3330-1 13030 12

3330-11 13030 12

3340 8368 8

3350 19069 18

Figure 39.SYSUTI and SYSLMOD Device Types and their Maximum Record Sizes

module data set unless one of the following conditions exists.

1. The programmer has specified P ARM=' ... DC, ... ', forcing the linkage editor
to wrIte records having a maximum size of 1024 (lK) bytes.

2. The programmer has specified PARM=' ... DCBS, ... ', and the
SYSLMOD DD statement contains a BLKSIZE subprarmeter in the DCB
parameter, forcing the linkage editor to write records having a maximum
length equal to the BLKSIZE specification.

3. The output load module data set is an existing data set having a block size
less than the optimum record size, forcing the linkage editor to write
records no longer than that block size.

4. The programmer has specified a value2 less than twice the maximum
record size for the output load module data set, forcing the linkage editor
to write records having a maximum size of one-half value2.

5. The intermediate data set and the output load module data set have
dissimilar record sizes, forcing th6 linkage editor to write records having a
maximum size determined for compatibility between the two data sets.

The linkage editor optimizes the record size of the output load module data
set for its device type but selects a record size compatible with the
intermediate data set (see restrictions above). Therefore, use of the load
module buffer is optimized if the intermediate data set and the output load
module data set reside on the same device type. The performance of the
linkage editor is improved if the data sets are on different units of the same
type.

Figure 40 shows the record sizes used for compatibility between every
combination of device types for the intermediate and output load module data
sets.

Value2 is, minimally, twice the record size for the output load module data
set. If value2 can be made larger than twice the record size for the output
load module data set, the increase should be the larger of the record sizes for
the intermediate and output load module data sets.

The maximum for value2 is 102400 (lOOK). The practical maximum
however, is the length of the load module to be built, plus 4K if the length of
the load module to be built is equal to or greater than 40960 (40K). Any
space allocated to the load module buffer above this amount is not used and
need not be allocated to value2.

If a value greater than the maximum for value2 is specified, the default value
for value2 is used. If a value2 is specified that cannot be accomodated in the

1M, OS/VS Linkage Editor and Loader

SYSLMOD Record Size SYSUTI Record Size Minimum
LoadModtde

Device Maximum Record Device Maximum Record Buffer Area
Used Size Produced Used Size Produced (Value2)

IBM 2314 6K 2305 12K2 12K
IBM 2319 2314,2319 6K 12K

3330,3330-1 12K2 24K
3340 6K2 12K

6K 3350 18K 18K

IBM 3330 12K 2305 12K2 24K
IBM 3330-1 2314,2319 6K 24K

3330,3330-1 12K 24K
3340 6K2 24K

12K 3350 12K2 24K

IBM 3340 7.5K 2305 7.5K2 15K
IBM 3344 6Kl 2314,2319 6K 12K

7.5K 3330,3330-1 7.5K2 15K
7.5K 3340 7.5K 15K
7.5K 3350 15K2 15K

IBM 2305 13K 2305 13K 26K
12Kl 2314,2319 6K 24K
12Kl 3330,3330-1 12K 24K
12Kl 3340 6K 24K
13K 3350 13K2 26K

IBM 3350 13Kl 2305 13K 26K
18K 2314,2319 6K 36K
12Kl 3330,3330-1 12K 24K
18K 3340 6K 36K
18K 3350 18K 36K

Notes:

1 The SYSLMOD record size is reduced to less than the maximum to make it compatible with the SYSUTl
record size.

2 The SYSUTl record size is reduced to less than the maximum to make it compatible with the SYSLMOD
record size.

Figure 40. Load Module Buffer Area and SYSLMOD and SYSUT1 Record Sizes

available storage, value2 is reduced to the next lower 2K multiple of storage
that is available. This reduction, however, never decreases value2 to less than
the minimum, 6144 (6K).

The optimal value2 is the practical maximum, as explained above. If the entire
load module is contained in storage, the performance of the linkage editor is
improved and the use of the intermediate data set may be eliminated.

Job Control Language Summary 105

Examplt5 0/ Yalue2 Determination

1. A lmid module of between 21K and 22K is to be built. The load module
data set is a new data set on a 3330. The intermediate data set is allocated
to a 2314. A SYSLIB data set is to be used, residing on a 3330. The entire
load module could be contained in the load module buffer if value2 were
22K (the load module size). The minimum for value2 would be 12K (the
size of the largest possible input load module text record from the SYSLIB
data set). However, value2 must be at least as large as two records to be
written to the load module data set (that is, 24K). There is a reconciliation
necessary in this case between the two dissimilar device types for the
intermediate and output load module data sets; but the record size of the
output load module data set is an even multiple of the record size of the
intermediate data set so no adjustment of the record sizes is made.
Therefore, the minimum, as well as the maximum and optimal, value2 in
this case is 24 K.

2. A load module of more than 50K is to be re-link-edited; however, a
maximum of 40K is available to be allocated to value2. The output load
module data set is an old data set residing on a 2314, written with
maximum record size. The intermediate data set is allocated to a 2305. The
link-edit involves a control section in the SYSLIN data set that will replace
a control section in the old load module, followed by an INCLUDE
statement naming the old load module on the SYSLMOD data set. The
maximum for value2 cannot be satisfied, since only 40K is available. The
size of two maximum records written to a 2314 would be 12K. However,
the size of one record to be written or to be read from the intermediate
data set is 12K. Therefore, the minimum for value2 in this case is 12K.
This is sufficient space for one input load module text record or one record
written to or to be read from the intermediate data set or two records
written to the output load module data set. The optimum value2 in this
case is 36K; the minimum, 12K, plus two increments of the larger of the
record sizes for the intermediate data set and the output load module data
set, 12K.

3. The output load module data set resides on a 2305. The intermediate data
set is allocated to a 3330. All load module input comes from a 3330.
Value2 in this case is 24K, because the input load module text records are,
at most, 12K, the records written to and read from the intermediate data
set are 12K, and the records written to the output load module data set are
12K. The maximum record size of 13K for the 2305 is reduced to 12K for
this link-edit in order to be compatible with the intermediate data set.

An alternative for value2 in the above example is 12K. 12K is adequate for
the input load module text records and the records written to and read
from the intermediate data set. 12K forces a maximum record size of 6K to
be written to the output load module data set. At 6K each, two records can
be written on a 2305 track while, as in the above example, only one record
of 12K can be written on a 2305 track.

4. A load module of 10K is to be link-edited. The output load module data set
resides on a 2305. The input load module libraries all reside on 2314s. The
intermediate data set is allocated to a 2314. The programmer has specified
the linkage editor parameter DC. The minimum for value2 of 6K is
adequate in this case, since 6K is sufficient for input and intermediate data
set records and the output load module data set records have a maximum
size of lK.

106 OS/VS Linkage Editor and Loader

5. The output load module data set is a new data set allocated to a 3330. The
programmer has specified the linkage editor parameter DCBS and the
SYSLMOD DD statement contains ' ... DCB=(... BLKSIZE=3072, ...), ... '.
The only load module input comes from a data set created previously in a
similar manner. The intermediate data set is allocated to a 2314. The
minimum for value2 in this case is 6K; the input load module records are
3K at most, the intermediate data set records are 6K at most, and, as
directed by the programmer, the linkage editor produces records having a
maximum size of 3K on the output load module data set.

Valoe t: Value 1 specifies the number of bytes of virtual storage available to
the linkage editor, regardless of the region or partition size. The storage
specified by value 1 includes the allocation specified by value2 ..

The minimum for valuel is the design point of the linkage editor, 64K. If a
value less than the minimum for value 1 is specified, the default options for
both value 1 and value2 are used.

The practical minimum valuel is 65536 (64K) plus any excess in value2 over
6144 (6K), plus any additional space required to support the blocking factor
for the SYSLIN, object module library, and SYSPRINT data sets.

The design point of the linkage editor provides for the minimum load module
buffer- 6144 (6K) bytes of virtual storage. If a load module buffer larger
than 6144 (6K) is specified in value2, valuel must be increased by the excess
of that value2 over 6144 (6K).

The linkage editor supports three different blocking factors for the SYSLIN,
object module library, and SYSPRINT data sets; they are 5, 10, and 40 to 1.
The requirement for additional space depends upon the blocking factor that is
to be supported.

The following table shows the additional space required to support each
blocking factor.

Blocking Factor

5 to 1 OorOK

10 to 1 18432 or 18K

40 to 1 28672 or 28K

Blocking factors of 1 through 4,6 through 9, and 11 through 39 are treated as
blocking factors of 5, 10, and 40, respectively. Blocking factors greater than
40 are invalid.

The additional space requirement is determined by the largest blocking factor
among the affected data sets.

The blocking factor supported is dependent upon space available after value2
has been allocated to the load module buffer out of value 1. Therefore, if the
space provided in valuel is insufficient, the link-edit will be terminated with
an error message to that effect.

Valuel should be as large as possible. Generally, the performance of the
linkage editor is improved when additional storage is allocated by value 1.

The maximum value that can be specified for value 1 is 999999 or 9999K.
However, the amount of virtual storage actually allocated for valuel is the
smaller of:

• the region or partition size

• the amount specified for valuel

. Job Control Language Summary 107

DCBS Option

CAUTION: The region or partition size must be at least 10K bytes larger than
the storage amount specified in value 1. (See EXEC Statement-Region
Parameter later in this chapter.) Ifnot, an abnormal termination of the
link-edit could result, because some of the storage reserved for data
management and other system functions had been allocated to value 1.

Examples of Value} Determilllltion

1. An optimum value2 of 36K has already been determined for the link-edit.
An appropriate valuel is 94K, since an additional30K, above the minimum
of 64K, is needed to support the allocation of 36K to value2 and no
additional storage is required to support the blocking factors for SYSLIN,
SYSPRINT, and any object module libraries.

2. The minimum for value2 (6K) is being used. All of the object module
libraries are blocked 5-to-l, except one that is blocked 10-to-1. The
SYSLIN and SYSPRINT data sets are assigned blocking factors of 5. An
appropriate valuel for this link-edit is 82K, the minimum plus the 18K
needed to support the blocking factor of 10-to-l on the object module
library. Minimum region size is 92K.

3. The same situation exists as in example 2. However, in this case the
minimum region size is lOOK. A more appropriate value 1, under these
circumstances, is 90K. Since extra space is available, it is possible to
optimize use of the region allocated.

The DCBS option allows the programmer to specify the block size for the
SYSLMOD data set in the DCB parameter of SYSLMOD DD statement.

If the DCBS option is specified, the block size value in the DSCB for the
SYSLMOD data set may be overridden. If the DCBS option is not specified,
the block size value in the DSCB for the SYSLMOD data set may not be
overridden.

If the DCBS option is specified and no block size value is provided in the
DCB parameter of the SYSLMOD DD statement, the linkage editor uses the
maximum track size for the device. If the DCBS option is not specified and a
block size value is provided in the DCB parameter of the SYSLMOD DO
statement, the block size value in the DCB parameter of the SYSLMOD 00
statement is ignored by the linkage editor.

Even though the DCBS option is specified, the linkage editor will not allow
the programmer to set the block size for the SYSLMOD data set to a value
less than the minimum; that is, 256, or 1024 if the SCTR option is specified,
or a value less than the block size in the DSCB for an existing data set.

The block size specified by the programmer will be used unless (1) it is larger
than the maximum record size for the device, in which case the maximum
record size is used, or (2) it is less than the minimum block size, in which case
the minimum block size is used.

The following example shows the use of the DCBS option for a 2314 disk:

IILKED EXEC PGM=HEWL,PARM='XREF,DCBS'

IISYSLMOD
II

DD DSNAME=LOADMOD(TEST),DISP=(NEW,KEEP),
DCB=(BLKSIZE=3072), ...

108 OS/VS Linkage Editor and Loader

Output Options

Control Statement Listing Option

Module Map Option

Cross-Reference Table Option

As a result, the linkage editor uses a 3K blocksize for the output module
library.

Note: When the DCBS option is used, a blocksize must be specified in the
DCB parameter of the SYSLMOD DD statement.

These options control the optional diagnostic output produced by the linkage
editor. The programmer can request that the linkage editor produce a list of
all control statements and a module map or cross-reference table to help in
testing a program. The format of each is described in the chapter "Output
from the Linkage Editor."

In addition, the programmer can request that the numbered error/warning
messages generated by the linkage editor should appear on the SYSTERM
data set as well as on the SYSPRINT data set.

To request a control statement listing, code LIST in the P ARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='LIST, ... '

When the LIST option is specified, all control statements processed by the
linkage editor are listed in card-image format on the diagnostic output data
set.

To request a module map, code MAP in the P ARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='MAP, ... '

When the MAP option is specified, the linkage editor produces a module map
of the output module on the diagnostic output data set.

To request a cross-reference table, code XREF in the P ARM field, as
follows:

//LKED EXEC PGM=HEWL,PARM='XREF, ... '

When the XREF option is specified, the linkage editor produces a
cross-reference table of the output module on the diagnostic output data set.
The cross·reference table includes a module map; therefore, both XREF and
MAP need not be specified for one linkage editor job step.

Alternate Output (SYSTERM) Option

To request that the numbered linkage editor error/warning messages be
generated on the data set defined by a SYSTERM DD statement, code
TERM in the PARM field, as follows:

//LKED EXEC PGM=HEWL,PARM='TERM, ... '

When the TERM option is specified, a SYSTERM DD statement must be
provided. If it is not, the TERM option is negated.

Output specified by the TERM option supplements printed diagnostic
information; when TERM is used, linkage editor error/warning messages
appear in both output data sets.

Job Control Language Summary 109

Incompatible Job Step Options

-:v~
d~

~
!-- ,,~'?

~~~ 
+~ 

X 
>< 
X 
X ex: ex: X 

X 

<y" v 

When mutually exclusive job step options are specified for a linkage editor 
execution, the linkage editor ignores the less significant options. Figure 41 
illustrates the significance of those options that are incompatible. When an X 
appears at an intersection, the options are incompatible. The option that 
appears higher in the list is selected. 

For example, to check the compatibility of XREF and NE, follow the XREF 
column down and the NE row across until they intersect. Since an X appears 
where they intersect, they are incompatible; XREF is selected, NE is negated. 

If incorrect values are specified for the SIZE parameter, the default values are 
used. If incompatible options are detected, the message 

*** OPTIONS INCOMPATIBLE *** 
is printed. This message follows the standard module disposition message. 

*-"" ~% 
<:;'? 

X 
~% 

~ 
~~ 

G"~ 
lX 

s 
~~ 

~ 
~c~ 

,'?" v 
~ 

~c~ 

Ov 

~c 

'?\.'V~ 
~~ 
~ 

c~'? 
~ 

~ 
,,<v~ 

J 
~ 

Figure 41.Incompatible Job Step Options for the Linkage Editor 

110 OS/VS Linkage Editor and Loader 



EXEC Statement-Region Pammeter 

If the SIZE option is specified, the partition size in VS 1 must be at least 10K 
larger than valuel. If VS2 is used, the default or specified region size must be 
at least '10K larger than value 1. 

Note: Due to certain paging requirements it may be necessary to increase the 
10K slightly. 

For example, if SIZE = (200K,36K) is coded, the REGION specified must be 
210K. 

EXEC Statement-Return Code 

The linkage editor passes a return code to the control program upon 
completion of the job step. The return code reflects the highest severity code 
recorded in any iteration of the linkage editor within that job 'step. The 
highest severity code encountered during processing is multiplied by 4 to 
create the return code; this code is placed into register 15 at the end of 
linkage editor processing. Figure 42 contains the return codes, the 
corresponding severity code, and a description of each. 

Return 
Code 

00 

04 

08 

12 

16 

Severity 
Code ~~tiOD 

o Normal conclusion. 

2 

3 

4 

Warning messages have been listed, execution should 
be successful. For example, if the overlay option is 
specified and the overlay structure contains only one 
segment, a return code of 04 is issued. 

Error messages have been listed, execution may fail. 
The module is marked not executable unless the LET option 
is specified. For example, if the blocksize of a specified 
library data set cannot be handled by the linkage editor, 
a return code of 08 is issued. 

Severe errors have occurred, execution is impossible. 
For example, if an invalid entry point has been specified, 
a return code of 12 is issued. 

Terminal errors have occurred, the processing has terminated. 
For example, if the linkage editor cannot handle the blocking 
factor requested for SYSPRINT, a return code of 16 is issued. 

Figure 42.Linkage Editor Return Codes 

The programmer may use this return code to determine whether or not the 
load module is to be executed by using the condition parameter (COND) on 
the EXEC statement for the load module. The control program compares the 
return code with the values specified in the COND parameter, and the results 
of the comparisons are used to determine subsequent action. The COND 
parameter may be specified either in the JOB statement or the EXEC 
statement (see the publication OS/VSl JCL Reference orOS/VS2 JCL). 

Job Control Ljnguage Summary J J J 



DD Statements 

Every data set used by the linkage editor must be described with a 
DD statement. Each DD statement must have a name, unless data sets are 
concatenated. The DD statements for data sets required by the linkage editor 
have pre-assigned names; those for additional input data sets have 
user-assigned names; those for concatenated data sets (after the first) have no 
names. 

In addition to the name, the DD statement provides the control program with 
information about the input/output device on which the data set resides, and 
a description of the data set itself. All of the job control language facilities for 
device description are available to the users of the linkage editor. 

Besides information about the device, the DD statement also contains a data 
set description, which includes the data set name and its disposition. 
Information for the data control block (DCB) may also be given. 

General information pertinent to the linkage editor on the data set name and 
DCB information follows; information on disposition is given in the 
discussion for each data set. 

Data Set Name: The linkage editor uses either sequential or partitioned data 
sets. For sequential data sets, only the name of the data set is specified; for 
partitioned data sets, the member name must also be specified either on the 
DD statement or with a control statement. 

When input data sets are passed from a previous job step, or when the output 
load module is being tested. a recommended practice is to use temporary data 
set names (that is, && dsname). Use of temporary names ensures that there are 
no duplicate data sets with out-of -date modules. A data set with a temporary 
name is automatically deleted at the end of the job. When a module is to be 
stored permanently, a data set name without ampersands is used. 

DCB Information: Before a data set can be used for input, information. 
describing the data set must be placed in the data control block (DCB). If this 
information does not exist in the DCB or header label, or if no labels are used 
(magnetic tape does not require labels), the programmer must specify it in the 
DCB parameter on the DD statement. 

Record format (RECFM), logical record size (LRECL), and blocksize 
(BLKSIZE) subparameters of the DCB parameter are discussed as they apply 
to the linkage editor. Specific information on each as it applies to the linkage 
editor data sets is given in the description of the data set which follows later 
in this section. Other DCB information (tape recording technique, density, 
and so forth) is described in the publication OS/VSl JCL Reference or 
OS/VS2 JCL. 

tt? OS/VS Linkage Editor and Loader 



Record Fonnat: 
The following record formats are used with the linkage editor: 

F The records are fixed length. 

FD The records are fixed length and blocked. 

FDA The records are fixed length, blocked, and contain ANSI control characters. 

FBS The records are fixed length, blocked, and written in standard blocks. 

FA The records are fixed length and contain ANSI control characters. 

FS The records are fixed length and written in standard blocks. 

U The records are undefined length. 

UA The records are undefined length and contain ANSI control characters. 

A record format of FS or FBS must be used with caution. All blocks in the 
data set must be the same size. This size must be equal to the specified 
blocksize. A truncated block can occur only as the last block in the data set. 

Note: Track overflow is never used by the linkage editor. When moving or 
copying load modules, it is recommended that the track overflow feature not 
be used on the target data set as errors may occur in fetching the load 
modules for execution. 

Logical Record and Blocksize: Blocking is allowed for input object module 
data sets and the diagnostic output data set. The blocking factors used to 
determine buffer allocations are 10 and 40. The BLKSIZE must therefore be 
a multiple of LRECL. See the description of blocking factors in the discussion 
of the SIZE opion. 

Also, a blocksize should be specified for the output load module library when 
the DCBS option is specified (see "SYSLMOD DD Statement" later in this 
section). 

li"".,~ Editor DD Statements 

The linkage editor uses six data sets; of these, four are required. The 
DD statements for these data sets must use the preassigned ddnames given in 
Figure 43. The descriptions that follow give pertinent device and data set 
information for each linkage editor data set. 

Job Control Language Summary 113 



SYSLIN DD Statement 

SYSLIB DD Statement 

DataSet ddname 

Primary input data set SYSLIN 

Automatic call library SYSLIB 

Intermediate data set SYSUTI 

Diagnostic output data set SYSPRINT 

Output module library SYSLMOD 

Alternate output data set SYSTERM 

Figure 43. Linkage Editor ddnames 

Req*ed 

Yes 

Only if the automatic library call 
mechanism is used 

Yes 

Yes 

Yes 

Only if the TERM option is specified 

The SYSLIN DD statement is always required; it describes the primary input 
data set which can be assigned to a direct-access device, a magnetic tape unit, 
or the card reader. The data set may be either sequential or partitioned; in the 
latter case, a member name must be specified. 

If SYSLIN is assigned to a card reader or "pseudo card reader," input records 
must be unblocked and 80-bytes long. (A pseudo card reader is defined as 
input from a tape or direct-access device in card reader mode.) 

This data set must contain object modules and/or control statements. Load 
modules used in the primary input data set are considered a severity 4 error. 

The recommended disposition for the primary input data set is SHR or OLD. 

The DeB requirements are shown in Figure 44. 

DeB Requirements 

LRECL BLKSIZE 

80 80 

RECFM 

F,FS 

80 400,800,3200* FB,FBS 
* These are the maximum blocksizes allowed. Which maximum is applicable depends on the value given to 

valuel and value2 of the SIZE option. 

Figure 44. DCB Requirements for Object Module and Control Statement Input 

The SYSLIB DD statement is required when the automatic library call 
mechanism is to be used. This DD statement describes the automatic call 
library, which must be assigned to a direct-access device. The data set must 
be partitioned, but member names should not be specified. 

The recommended disposition for the call library is SHR or OLD. 

If concatenated call libraries are used, object and load module libraries must 
not be mixed. If only object modules are used, the call library may also 
contain control statements. 

The DeB requirements for object module call libraries are given in Figure 44. 
The DeB requirement for load module call libraries is a record format of U; 
the blocksize used for storage allocation is equal to the maximum for the 
device used, not the record read. 

This data set must not be assigned to SYSOUT. 

114 OS/VS Linkage Editor and Loader 



SYSUTI 00 Statement 

SYSPRINT DO Statement 

SYSLMOD DD Statement 

The SYSUTI DD statement is always required; it describes the intermediate 
data set, which is a sequential data set assigned to a direct-access device. 
Space must be allocated for this data set but the DCB requirements are 
supplied by the linkage editor. 

The SYSPRINT DD statement is always required; it describes the diagnostic 
output data set, which is a sequential data set assigned to a printer or an 
intermediate storage device. If an intermediate storage device is used, the data 
records contain a carriage control character as the first byte. 

The usual specification for this data set is SYSOUT=A. The programmer may 
assign a blocksize if he is running under a VS 1 or VS2 system. The record 
format assigned by the linkage editor depends on whether blocking is used or 
not. 

Figure 45 shows the DCB requirements for SYSPRINT. The bold-face type 
represents information supplied by the linkage editor. The only information 
that can be supplied by the programmer is the blocksize. . 

OCB Requirements for SYSPRINT 

LRECL 

III 

III 

BLKSIZE 

111 

n x 121 where n 
is less than or 
equal to 40 

RECFM 

FA 

FBA 

Note: The value specified for BLKSIZE, either on the DCB parameter of the SYSPRINT DO statement or 
in the DSCB (data set control block) of an existing data set, must be a multiple of 121; if it is not, the linkage 
editor issues a message to the operator's console and terminates processing. 

Figure 45. DCB Requirements for SYSPRINT 

The SYSLMOD DD statement is always required; it describes the output 
module library, which must be a partitioned data set assigned to a 
direct-access device. 

A member name may be specified on the SYSLMOD DD statement. If a 
member name is specified, it is used only if a name was not specified on a 
NAME control statement. This member name must conform to the rules for 
the name on the NAME control statement. This would imply the replacement 
of an identically named member in the output load module library, if one 
exists. 

If the member is to replace an identically named member in an existing 
library, the disposition should be OLD or SHR. If the member is to be added 
to an existing library, the disposition should be MOD, OLD, or SHR. If no 
library exists and the member is the first to be added to a new library, the 
disposition should be NEW or MOD. If the member is to be added to an 
existing library that may be used concurrently in another region or partition, 
the disposition should be SHR. 

The record format U is assigned by the linkage editor. See Appendix G. 

Job Control Language Summary lIS 



SYSTERM DD Statement 

The linkage editor assigns a blocksize by: 

1. Finding the smallest of the following values: 

• The maximum track size for the device 

• The value of the BLKSIZE subparameter in the DCB parameter on the 
SYSLMOD DD statement, if the DCBS option was specified 

• 1024, if the DC option was specified 

• The actual output buffer length (half the number specified for value2 of 
the SIZE option) 

2. Comparing the smallest value above to the value currently in.the DSCB. 
The greater value is assigned as the block size. 

Note: When a new data set is created at linkage editor time, without the 
DCBS option specified, the DSCB will reflect the maximum blocksize 
available for the device type. 

If the SYSLMOD DD statement is used as a source of load module input, 
the SYSLMOD data set is read with a record format of U in all cases. 

In the following example, the SYSLMOD DD statement specifies a 
permanent library on an IBM 2314 Disk Storage Device: 

IISYSLMOD DD DSNAME=USERLIB(TAXES),DISP=MOD, 
II UNIT=2314, ... 

The linkage editor assigns a record format of U, and a logical record and 
blocksize of 6K, the maximum for a 2314. However, consider the following 
example: 

IILKED 

IISYSLMOD 
II 

EXEC 

DD 

PGM=HEWL,PARM='XREF,DCBS' 

DSNAME=USERLIB(TAXES),DISP=MOD, 
UNIT=2314,DCB=(BLKSIZE=3072), ... 

The linkage editor still assigns a record format of U, but the logical record and 
block size are now 3K rather than 6K, due to the use of the DCBS option. 

The SYSTERM DD statement is optional; it describes a data set that is used 
only for numbered error/warning messages. Although intended to define the 
terminal data set when the linkage editor is being used under the Time 
Sharing Option (TSO) of VS2, the SYSTERM DD statement can be used in 
any environment to define a data set consisting of numbered error/warning 
messages that supplements the SYSPRINT data set. 

SYSTERM output is defined by including a SYSTERM DD statement and 
specifying TERM in the P ARM field of the EXEC statement. When 
SYSTERM output is defined, numbered messages are then written to both the 
SYSTERM and SYSPRINT data sets. 

The following example shows how the SYSTERM DD statement could be 
used to specify the system output unit: 

IISYSTERM DD SYSOUT=A 

The DCB requirements for SYSTERM (LRECL=121,BLKSIZE=121, and 
RECFM=FBA) are supplied by the linkage editor. If necessary, the linkage 

116 OS/VS Linkage Editor and Loader 



Additional DD Statements 

editor will modify the DSCB (data set control block) of an existing data set to 
reflect these values. 

Each ddname specified on an INCLUDE or LIBRARY control statement 
must also be described with a DD statement. These DD statements describe 
sequential or partitioned data sets, assigned to magnetic tape units or 
direct-access devices. 

The ddnames are specified by the user along with any other necessary 
information. The DCB requirements for these data sets are shown in Figure 
46. 

OCB Requirements 

Data Set Contents LRECL BLKSIZE RECFM 

I Include Control Statement 

Object modules and/or 80 80 F,FS 
control statements 

Load modules lK lK U 

I Library Control Statement 

Object modules and/or 80 80 F,FS 
control statements 400,800,3200* FB,FBS 

Load Modules maximum equal to U 
for device, LRECL 
or one-half 
of value2, 
whichever 
is smaller 

* These are the maximum blocksizes allowed. Which maximum is applicable depends on the values given to 
valuel and value2 of the SIZE option. 

Figure 46.DCB Requirements for Additional Input Data Sets 

When concatenated data sets are included, each data set must contain records 
of the same format, record size, and blocksize. If the data sets reside on 
magnetic tape, the tape recording technique and density must also be 
identical. 

If the SYSLMOD DD statement is used as a source of load module input, the 
SYSLMOD data set is read with a record format of U in all cases. 

Job Control Language Summary 117 



Cataloged Procedures 
To facilitate the operation of the system, the control program allows the 
programmer to store EXEC and DD statements under a unique member name 
in a procedure library. Such a series of job control language statements is 
called a cataloged procedure. These job control language statements can be 
recalled at any time to specify the requirements for a job. To request this 
procedure, the programmer places an EXEC statement in the input stream. 
The EXEC statement specifies the unique member name of the procedure 
desired. 

The specifications in a cataloged procedure can be temporarily overridden, 
and DD statements can be added. The information altered by the programmer 
is in effect only for the duration of the job step; the cataloged procedures 
themselves are not altered permanently. Any additional DD statements 
supplied by the programmer must follow those that override the cataloged 
procedure. 

Linkage Editor Cataloged Procedures 

Procedure LKED 

IILKED 
IISYSPRINT 
IISYSLIN 
IISYSLMOD 
II 
IISYSUTl 
II 

EXEC 
DD 
DD 
DD 

DD 

Two linkage editor cataloged procedures are provided: a single-step procedure 
that link edits the input and produces a load module (procedure LKED), and 
a two-step procedure that link edits the input, produces a load module, and 
executes that module (procedure LKEDG). Many of the cataloged 
procedures provided for language translators also contain linkage editor steps. 
The EXEC and DD statement specifications in these steps are similar to the 
specifications in the cataloged procedures described in the following 
paragraphs. 

The cataloged procedure named LKED is a single-step procedure that link 
edits the input, produces a load module, and passes the load module to 
another step in the same job. The statements in this procedure are shown in 
Figure 47; the following is a description of these statements. 

Statement Numbers: The 8-digit numbers on the right-hand side of each 
statement are used to identify each statement and would be used, for 
example, when permanently modifying the cataloged procedure with the 
system utility program IEBUPDTE. For a description of this utility program, 

I see the publications OS/VSl Utilities and OS/VS2 MVS Utilities. 

EXEC Statement: The P ARM field specifies the XREF, LIST, LET, and 
NCAL options. If the automatic library call mechanism is to be used, the 
NCAL option must be overridden, and a SYSLIB DD statement must be 
added. Overriding and adding DD statements is discussed later in this section. 

SYSPRINT Statement: The SYSPRINT DD statement specifies the SYSOUT 
class A, which is either a printer or an intermediate storage device. If an 
I intermediate storage device is used, ANS carriage control characters 

PGM=HEWL,PARM='XREF,LIST,LET,NCAL' ,REGION=96K 00020000 
SYSOUT=A 00040000 
DDNAME=SYSIN 00060000 
DSNAME=&&GOSET(GO),SPACE=( 1024,(50,20,1 », coooaoooo 
UNIT=SYSDA,DISP=(MOD,PASS) 00100000 
UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN», C00120000 
SPACE=(1024,(200,20» 00140000 

Figure 47.Statements in the LKED Cataloged Procedure 

118 OS/VS Linkage Editor and Loader 



accompany the data to be printed. 

SYSLIN Statement: The specification of DDNAME=SYSIN allows the 
programmer to specify any input data set as long as it fulfills the requirements 
for linkage editor input. The input data set must be defined with a DD 
statement with the ddname SYSIN. This data set may be either in the input 
stream or residing on a separate volume. 

If the data set is in the input stream, the following SYSIN statement is used: 

//LKED.SYSIN DD * 
If this SYSIN statement is used, it may be anywhere in the job step 
DD statements as long as it follows all overriding DD statements. The object 
module decks and/or control statements should follow the SYSIN statement, 
with a delimiter statement (/ *) at the end of the input. 

If the data set resides on a separate volume, the following SYSIN statement is 
used: 

//LKED.SYSIN DD ( parameters describing the input data set ) 

If this SYSIN statement is used, it may be anywhere in the job step 
DD statements as long as it follows all overriding DD statements. Several data 
sets may be concatenated as described in the chapter "Input to the Linkage 
Editor." 

SYSLMOD Statement: The SYSLMOD DD statement specifies a temporary 
data set and a general space allocation. The disposition allows the next job 
step to execute the load module. If the load module is to reside permanently 
in a library, these general specifications must be overridden. 

SYSUTI Statement: The SYSUTI DD statement specifies that the 
intermediate data set is to reside on a direct-access device, but not the same 
device as either the SYSLMOD or the SYSLIN data sets. Again, a general 
space allocation is given. 

SYSLIB Statement: Note that there is no SYSLIB DD statement. If the 
automatic library call mechanism is to be used with a cataloged procedure, a 
SYSLIB DD statement must be added; also, the NCAL option in the P ARM 
field of the EXEC statement must be negated . 

... 
Invoking the LKED Procedure: To invoke the LKED procedure, code the 
following EXEC statement: 

//stepname EXEC LKED 

where stepname is optional and is the name of the job step. 

Job Control Language Summary 119 



Procedure LKEDG 

IILKED 
IISYSPRINT 
IISYSLIN 
IISYSLMOD 
II 
IISYSUT1 
II 
IIGO 

EXEC 
DD 
DD 
DD 

DD 

EXEC 

The following example shows a sample JCL sequence for using the LKED 
procedure in one step to link-edit object modules to produce a load module, 
then executing the load module in a subsequent step. 

IILESTEP EXEC LKED 

( Overriding and/or additional DD statements 
for the LKED step) 

IILKED.SYSIN DD * 

( Object module decks and/or 
control statements ) 

IIEXSTEP EXEC PGM=*.LESTEP.LKED.SYSLMOD 

( DD statements and data for 
load module execution) 

1* ( If data is supplied for the execution step) 

Note: LESTEP invokes the LKED procedure and EXSTEP executes the load 
module produced by LESTEP. 

The cataloged procedure named LKEDG is a two-step procedure that link 
edits the input, produces a load module, and executes that load module. The 
statements in this procedure are shown in Figure 48. The two steps are named 
LKED and GO. The specifications in the statements in the LKED step are 
identical to the specifications in the LKED procedure. 

GO Step: The EXEC statement specifies that the program to be executed is 
the load module produced in the LKED step of this job. This module was 
stored in the data set described on the SYSLMOD DD statement in that step. 
(If a NAME statement was used to specify a member name other than that 
used on the SYSLMOD statement, use the LKED procedure.) 

The condition parameter specifies that the execution step is bypassed if the 
return code issued by the LKED step is greater than 4. 

Invoking the LKEDG Procedure: To invoke the LKEDG procedure, code the 
following EXEC statement: 

Iistepname EXEC LKEDG 

where stepname is optional and is the name of the job step. 

The following example shows a sample JCL sequence for using the LKEDG 
procedure to link-edit object modules, produce a load module, and execute 
that load module. 

PGM=HEWL,PARM='XREF,LIST,NCAL' ,REGION=96K 
SYSOUT=A 
DDNAME=SYSIN 
DSNAME=&&GOSET(GO),SPACE=( 1024,(50,20,1 )), 
UNIT=(SYSDA,DISP=(MOD,PASS) 
UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), 
SPACE=(1024,(200,20)) 
PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED) 

00020000 
00040000 
00060000 

C00080000 
00100000 

C00120000 
00140000 
00160000 

Figure 48.Statements in the LKEDG Cataloged Procedure 

120 OS/VS Linkage Editor and Loader 



IITWOSTEP EXEC LKEDG 

( Overriding and/or additional DD statements for 
the LKEO step, ) 

IILKED.SYSIN DD * 

1* 

( Object module decks and/or 
control statements) 

( DO statements for the GO step) 

IIGO.SYSIN DD * 
( Data for the GO step) 

1* 

Overriding Cataloged Procedures 

Overriding the EXEC Statement 

Overriding DD Statements 

The programmer may override any of the EXEC or DD statement 
specifications in a cataloged procedure. These new specifications remain in 
effect only for the duration of the job step. For a detailed description of 
overriding cataloged procedures, see the publication OS/VSl JCL Reference 
or OS/VS2 JCL. 

The EXEC statement in a cataloged procedure is overridden by specifying the 
changes and additions on the EXEC statement that invokes the cataloged 
procedure. The stepname should be specified when overriding the EXEC 
statement parameters. 

For example, the REGI(l)N parameter can be increased as follows: 

IILESTEP EXEC LKED,REGION.LKED=136K 

The rest of the specifications on the EXEC statement of procedure LKED 
remain in effect. 

If the P ARM field is to be overridden, all of the options specified in the 
cataloged procedure are negated. That is, if XREF, LIST, or NCAL is desired 
when overriding the P ARM field, it must be respecified. In the following 
example, the OVL Y option is added and the NCAL option is negated: 

IILESTEP EXEC LKED,PARM.LKED='OVLY,XREF,LIST' 

As a result, the XREF and LIST options are retained, but the NCAL option is 
negated; when NCAL is negated, a SYSLIB DD statement must be added. 

If you use the LKEDG procedure and want to execute the load module just 
built, an efficient way is to specify the parameter LET in the LKED step and 
invoke the LKEDG procedure with the following EXEC statement: 

Iistepname 
II 

EXEC LKEDG,PARM.LKED='XREF,LIST,NCAL,LET' , 
COND.GO=(8,LT,LKED) 

Each DD statement that is used to override a DD statement in the LKED step 
of either the LKED procedure or the LKEDG procedure must begin with 
IILKED.ddname .... 

Each DD statement that is used to override a DD statement in the GO step of 
the LKEDG procedure must begin with IIGo. ddname. . . . 

Any of the DD statements in the cataloged procedures can be overridden as 
long as the overriding DD statements are in the same order as they appear in 

Job Control Language Summary 121 



Adding DD Statements 

the procedure. If any DD statements are not overridden, or overriding DD 
statements are included but are not in sequence, the specifications in the 
cataloged procedure are used. 

Only those parameters specified on the overriding DD statement are affected; 
the rest of the parameters remain as specified in the procedure. In the 
following example, the output load module is to be placed in a permanent 
library: 

//LIBUPDTE EXEC 
//LKED.SYSLMOD DO 
//LKED.SYSIN DO 

LKED 
DSNAME=LOADLIB(PAYROLL),DISP=OLD 
DSNAME=OBJMOD,DISP=(OLD,DELETE) 

Unit and volume information should be given if these data sets are not 
cataloged. 

As a result of the statements in the example, the LKED procedure is used to 
process the object module in the OBJMOD data set. The output load module 
is stored in the data set LOADLIB with the name PAYROLL. The SPACE 
parameter on the SYSLMOD DD statement and the other specifications in 
the procedure remain in effect. 

DD statements for additional data sets can be supplied when using cataloged 
procedures. These additional DD statements must follow any overriding DD 
statements. 

Each additional DD statement for the LKED step must begin with 
/ /LKED . ddname ... and for the GO step must begin with 
//GO.ddname ... . 

In the following example, the automatic library call mechanism is to be used 
along with the LKEDG procedure: 

//CPSTEP EXEC LKEDG,PARM.LKED='XREF,LIST' 
//LKED.SYSLMOD DO DSNAME=LOADLIB(TESTER),DISP=OLD, ... 
//LKED.SYSLIB DO DSNAME=SYL1.PL1LIB,DISP=SHR 
//LKED.SYSIN DO * 

( Object module decks and/or control statements) 

/* 
//GO.SYSIN DO 

( Data for execution step) 

/* 

* 

The NCAL option is negated, and a SYSLIB DD statement is added between 
the overriding SYSLMOD DD statement and the SYSIN DD statement. 

122 OS/VS Linkage Editor and Loader 



LINKAGE EDITOR CONTROL STATEMENT 
SUMMARY 

General Format 

Format Conventions 

This chapter summarizes the linkage editor control statements. The 
description of each statement includes: 

• What the statement does 

• The format of the statement 

• Placement of the statement in the input 

• Notes on use, if any 

• One or more examples that include job control language statements, when 
necessary. 

The control statements are described in alphabetical order. Before using this 
chapter, the user should be familiar with the following information on general 
format, format conventions, and placement. 

Note: If the control statement to specify hierarchy format (HIARCHY) is 
specified for VS, the linkage editor prepares the load module accordingly. 
However, hierarchy format is not supported by VS, and it is ignored during 
execution of the load module. 

Each linkage editor control statement specifies an operation and one or more 
operands. Nothing 'must be written preceding the operation, which must begin 
in or after columm 2. The operation must be separated from the operand by 
one or more blanks. 

A control statement can be continued on as many cards as necessary by 
terminating the operand at a comma, and by placing a nonblank character in 
column 72 of the card. Continuation must begin in column 16 of the next 
card. A symbol cannot be split; that is, it cannot begin on one card and be 
continued on the next. 

The following conventions are used in the formats to describe the coding of 
the linkage editor control statements: 

• Boldface type indicates the exact characters to be entered. Such items must 
be entered exactly as illustrated (in upper case, if applicable). 

• Italic type specifies fields to be supplied by the user. 

• Other punctuation (parentheses, commas, spaces, etc.) must be entered as 
shown. 

• Braces { } indicate a choice of entry; unless a default is indicated, you must 
choose one of the entries. 

• Brackets [ ] indicate an optional field or parameter. 

• An ellipsis ( ..• ) indicates that multiple entries of the type immediately 
preceding the ellipsis are allowed. 

• Items separated by a vertical bar ( I ) represent alternative items. No more 
than one of the items may be selected. 

Linkage Editor Control Statement Summary 123 



Placement Information 

Linkage editor control statements are placed before, between, or after 
modules. They can be grouped, but they cannot be placed within a module. 
However, specific placement restrictions may be imposed by the nature of the 
functions being requested by the control statement. Any placement 
restrictions are noted. 

124 OS/VS Linkage Editor and Loader 



ALIAS Statement 

The ALIAS statement specifies additional names for the output library 
member, and also can specify names of alternative entry points. Up to t6 
names can be specified on one ALIAS statement, or separate ALIAS 
statements for one library member. The names are entered in the directory of 
the partitioned data set in addition to the member name. 

Format: The format of the ALIAS statement is: 

I ALIAS I {symbol I external name }, ... 

symbol 
specifies an alternate name for the load module. When the module is 
executed, the main entry point is used as the starting point for execution. 

external name 
specifies a name that is defined as a control section name or entry name in 
the output module. When the module is called for execution, execution 
begins at the external name referred to. 

Placement: An ALIAS statement can be placed before, between, or after 
object modules or other control statements. It must precede a NAME 
statement used to specify the member name, if one is present. 

Notes: 

• In an overlay program, an external name specified by the ALIAS statement 
must be in the root sdgment. 

• No more than 16 alias names can be assigned to one output module. 

• Each alias specified for a load module is retained in the directory entry for 
the module; the linkage editor does not delete an old alias. Therefore, each 
alias that is specified must be unique; assigning the same alias to more than 
one load module can cause incorrect module reference. 

• Obsolete alias names should be deleted from the PDS directory using a 
system utility such as IEHPROGM, to avoid future name conflicts. 

• If the replace option is in effect for the output load module (that is, the 
load module built in this link edit does or may replace an identically named 
load module in the output module library), the replace option is in effect 
for each ALIAS name for the load module as well as the primary name. 

Example: An output module, ROUTt, is to be assigned two alternate entry 
points, CODEt and CODE2. In addition, calling modules have been written 
using both ROUTt and ROUTONE to refer to the output module. Rather 
than correct the calling modules, an alternative library member name is also 
assigned. 

ALIAS 
NAME 

CODE1,CODE2,ROUTONE 
ROUT 1 

Since CODEt and CODE2 are entry names in the output module, when these 
names are used to call the module, execution begins at the point referred to. 
The modules that call the output module with the name ROUTONE now 
correctly refer to ROUTI at its main entry point. The names CODEl, 
CODE2, and ROUTONE appear in the library directory along with ROUTI. 

Linkage Editor Control Statement Summary U5 



CHANGE Statement 

The CHANGE statement causes an external symbol to be replaced by the 
symbol in parentheses following the external symbol. The external symbol to 
be changed can be a control section name, an entry name, or an external 
reference. More than one such substitution may be specified in one 
CHANGE statement. 

Format: The format of the CHANGE statement is: 

CHANGE externalsymbol (newsymbo/) 
[, externalsymbol (newsymbol) J ... 

extemalsymbol 
is the control section name, entry name, or external reference that is to be 
changed. 

newsymbol 
is the name to which the external symbol is to be changed. 

Placement: The CHANGE control statement must be placed immediately 
before either the module containing the external symbol to be changed, or the 
INCLUDE control statement specifying the module. The scope of the 
CHANGE statement is across the immediately following module (object 
module or load module); the END record in the immediately following object 
module or the End-of-Module indication in the immediately following load 
module delimits the scope of the CHANGE statement. 

Notes: 

• External references from other modules to a changed control section name 
or entry name remain unresolved unless further action is taken. 

• If the symbol specified on the CHANGE statement is inadvertently 
misspelled, the symbol will not be changed. Linkage editor output, such as 
the cross-reference listing or module map, can be used to verify each 
change. 

• When a REPLACE statement that deletes a control section is followed by 
a CHANGE statement with the same control section name, unpredictable 
results will occur. 

Example 1: Two control sections in different modules have the name 
TAXROUT. Since both modules are to be link edited together, one of the 
control section names must be changed. The module to be changed is defined 
with a DD statement named OBJMOD. The control section name could be 
changed as follows: 

//OBJMOD DD DSNAME=TAXES,DISP=(OLD,KEEP), ... 
//SYSLIN DD * 

/* 

CHANGE TAXROUT(STATETAX) 
INCLUDE OBJMOD 

As a result, the name of control section T AXROUT in module TAXES is 
changed to STATETAX. Any references to TAXROUT from other modules 
are not affected. 

Example 2: A load module contains references to T AXROUT that must now 
be changed to STATET AX. This module is defined with a DD statement 

126 OS/VS Linkage Editor and Loader 



named LOADMOD. The external references could be changed at the same 
time the control section name is changed, as follows: 

//OBJMOD DD DSNAME=TAXES,DISP=(OLD,DELETE), ... 
//LOADMOD DD DSNAME=LOADLIB,DISP=OLD, ... 
//SYSLIN DD * 

CHANGE TAXROUT(STATETAX) 
INCLUDE OBJMOD 
CHANGE TAXROUT(STATETAX) 
INCLUDE LOADMOD(INVENTRY) 

/* ' 

As a result, control section name T AXROUT in module TAXES and external 
reference TAXROUT in module INVENTRY are both changed to 
STATETAX. Any references to TAXROUT from other modules are not 
affected. 

Linkage Editor Control Statement Summary 127 



ENTRY Statement 

The ENTRY statement specifies the symbolic name of the first instruction to 
be executed when the program is called by its module name for execution. An 
ENTRY statement should be used whenever a module is reprocessed by the 
linkage editor. If more than one ENTRY statement is encountered, the first 
statement specifies the main entry point; all other ENTRY statements are 
ignored. 

Format: The format of the ENTRY statement is: 

I ENTRY I externalname 

external name 
is defined as either a control section name or an entry name in a linkage 
editor input module. 

Placement: An ENTRY statement can be placed before, between, or after 
object modules or other control statements. It must precede the NAME 
statement for the module, if one is present. 

Notes: 

• In an overlay program, the first instruction to be executed must be in the 
root segment. 

• The external name specified must be the name of an instruction, not a data 
name, if the module is to be executed. 

Example: In the following example, the main entry point is INITl: 

//LOADLIB DD DSNAME=LOADLIB,DISP=OLD, ... 
//SYSLIN DD * 

ENTRY INIT1 
INCLUDE LOADLIB(READ,WRITE) 

ENTRY READIN 
/* 

INIT 1 must be either a control section name or an entry name in the linkage 
editor input. The entry point specification of READIN is ignored. 

128 OS/VS Linkage Editor and Loader 



EXPAND Statement 

The EXPAND statement lengthens control sections or named common 
sections by a specified number of bytes. 

Format: The format of an EXPAND statement is 

I 
EXPAND I name (xxxx ) 

[, name (xxxx )]. .. 

name 
is the symbolic name of a common section or control section whose length 
is to be increased. 

xxxx 
is the decimal number of bytes to be added to the length of a common 
section. Binary zeros will be added for an expanded control section. The 
maximum is 4095 for each section indicated. 

The EXPAND statement is followed by a message, IEW0740, that indicates 
the number of bytes added to the control section and the offset, relative to 
the start of the control section, at which the expansion begins. The effective 
length of the expansion is given in hexadecimal and may be greater than the 
specified length if, after the specified expansion, padding bytes must be added 
for alignment of the next control section or named common section. 

Placement: An EXPAND statement can be placed before, between, or after 
other control statements or object modules. However, the statement must 
follow the module containing the control or named common section to which 
it refers. If the control section or named common section is entered as the 
result of an INCLUDE statement, the EXPAND statement must follow the 
INCLUDE statement. 

Note: EXPAND should be used with caution so as not to increase the length 
of a program beyond its own design limitations. For example, if space is 
added to a control section beyond the range of its base register address ability , 
that space is unusable. 

Example: In the following example EXPAND statements add a 250-byte 
patch area (initialized to zeros) at the end of control section CSECTl and 
increase the length of named common section COMl by 400 bytes. 

IILKED EXEC PGM=HEWL 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD UNIT=SYSDA,SPACE=(TRK,( 10,4» 
IISYSLMOD DD DSNAME=PDSX,DISP=OLD 
IISYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS), 
II UNIT=SYSDA 
II DD * 

EXPAND CSECT1(250) 
EXPAND COM1(400) 
NAME MOD 1 (R) 

1* 

Linkage Editor Control Statement Summary 129 



IDENTIFY Statement 

The IDENTIFY statement specifies any data supplied by the user to be 
entered into the CSECT Identification (IDR) records for a particular control 
section. The statement can be used either to supply descriptive data for a 
control section or to provide a means of associating system-supplied data with 
executable code. 

Format: The format of the IDENTIFY statement is: 

IDENTIFY csectname ('data ')[,csectname('data ')] ... 

csectname 
is the symbolic name of the control section to be identified. 

data 
specifies up to 40 EBCDIC characters of identifying information. The user 
may supply any information desired for identificaionn purposes. 

The rules of syntax for the operand field are: 

1. No blanks or characters may appear between the left parenthesis and the 
leading quote nor between the trailing quote and the right parenthesis. 

2. The data field consists of from 1 to 40 characters; therefore, a null entry 
must be represented, minimally, by a single blank. 

3. Blanks may appear between the leading quote and the trailing quote. Each 
blank counts as 1 character toward the 40 character limit. 

4. A single quote between the leading quote and the trailing quote is 
represented by 2 consecutive quotes. The pair of quotes counts as 1 
character toward the 40 character limit. 

5. Any EBCDIC character may appear between the leading quote and the 
trailing quote. Each character counts as 1 character toward the 40 
character limit. 

6. The IDENTIFY statement may be continued; however, a whole operand 
must appear on a single card image and at least 1 whole operand must 
appear on each card image of the continued statement. 

7. If a leading quote is found, all characters are absorbed until a trailing quote 
is found or the 40 character limit is exhausted. 

8. Blanks may not appear between the CSECT name and the left parenthesis. 

9. A blank following a left parenthesis terminates the operand field; a blank 
following a comma that terminates an operand terminates the operand field 
of that card image. 

Placement: An IDENTIFY statement can be placed before, between, or after 
other control statements or object modules. The IDENTIFY statement must 
follow the module containing the control section to be identified or the 
INCLUDE statement specifying the module. 

Note: When two or more IDENTIFY statements specify the same CSECT 
name, only the last statement is effective. 

130· OS/VS Linkage Editor and Loader 



Example: In the following example, IDENTIFY statements are used to 
identify the source level of a control section, a PTF application to a control 
section, and the functions of several control sections. 

//LKED 
//SYSPRINT 
//SYSUTl 
//SYSLMOD 
//OLDMOD 
//PTFMOD 
//SYSLIN 

EXEC 
DD 
DD 
DD 
DD 
DD 
DD 

PGM=HEWL 
SYSOUT=A 
UNIT=SYSDA,SPACE=(TRK,( 10,5» 
DSNAME=LOADSET,DISP=OLD 
DSNAME=OLD.LOADSET,DISP=OLD 
DSNAME=PTF.OBJECT,DISP=OLD 

* 
(input object deck for a control section named FORT) 

/* 

IDENTIFY 
INCLUDE 
IDENTIFY 
INCLUDE 
IDENTIFY 

FORT( 'LEVEL 03' ) 
PTFMOD(CSECT4) 
CSECT4( 'PTF99999' ) 
OLDMOD ( PROG 1 ) 
CSECT1( 'I/O ROUTINE' ), 
CSECT2( 'SORT ROUTINE' ), 
CSECT3( 'SCAN ROUTINE' ) 

x 
X 

Execution of this example produces IDR records containing the following 
identification data: 

• The name of the linkage editor that produced the load module, the linkage 
editor version and modification level, and the date of the current linkage 
editor processing of the module. This information is provided 
automatically. 

• User-supplied data describing the functions of several control sections in 
the module, as indicated on the third IDENTIFY statement. 

• If the language translator used supports IDR, the Identification records 
produced by the linkage editor also contain the name of the translator that 
produced the object module, its version and modification level, and the 
data of compilation. 

The IDR records created by the linkage editor can be referenced by using the 
LISTIDR function of the service aid program HMBLIST for VS 1 or 
AMBLIST for VS2. For instructions on how to use HMBLIST, see OS/VSl 
Service Aids. For instructions on how to use AMBLIST, see OS/VS2 System 
Programming Library: Service Aids. 

Linkage Editor Control Statement Summary 131 



INCLUDE Statement 

The INCLUDE statement specifies sequential data sets and/or libraries that 
are to be sources of additional input for the linkage editor. INCLUDE 
statements are processed in the order in which they appear in the input. 
However, the sequence of data sets and modules within the output load 
module does not necessarily follow the order of the INCLUDE statements. 

Format: The format of the INCLUDE statement is: 

INCLUDE ddname[(membername[, ... ])] 
[, ddname [( membername [, ... ]) ]] ... 

ddname 
is the name of a DD statement that describes either a sequential or a 
partitioned data set to be used as additional input to the linkage editor. For 
a sequential data set, ddname is all that must be specified. For a partitioned 
data set, at least one member name must also be specified. 

membername 
is the name of or an alias for a member of the library defined in the 
specified DD statement. The membername must not be specified again on 
the DD statement. 

Placement: An INCLUDE statement can be placed before, between, or after 
object modules or other control statements. 

Note: A NAME statement in any data set specified in an INCLUDE 
statement is invalid; the NAME statement is ignored. All other control 
statements are processed. 

Example 1: In the following example, an INCLUDE statement specifies two 
data sets to be the input to the linkage editor: 

//OBJMOD DD DSNAME=&&OBJECT,DISP=(OLD,DELETE) 
//LOADMOD DD DSNAME=LOADLIB,DISP=SHR, ... 

//SYSLIN DD * 
INCLUDE OBJMOD,LOADMOD(TESTMOD,READMOD) 

/* 

Note that a DD statement must be supplied for every ddname specified in an 
INCLUDE statement. 

Example 2: Two separate INCLUDE statements could have been used in the 
preceding example, as follows: 

INCLUDE OBJMOD 
INCLUDE LOADMOD(TESTMOD,READMOD) 

132 OS/VS Linkage Editor and Loader 



INSERT Statement 

The INSERT statement repositions a control section from its position in the 
input sequence to a segment in an overlay structure. However, the sequence 
of control sections within a segment is not necessarily the order of the 
INSERT statements. 

If a symbol specified in the operand field of an INSERT statement is not 
present in the external symbol dictionary, it is entered as an external 
reference. If the reference has not been resolved at the end of primary input 
processing, the automatic library call mechanism attempts to resolve it. 

Format: The format of the INSERT statement is: 

I INSERT I csectname , ... 

csectname 
is the name of the control section to be repositioned. A particular control 
section can appear only once within a load module. 

Placement: The INSERT statement must be placed in the input sequence 
following the OVERLAY statement that specifies the origin of the segment in 
which the control section is to be positioned. If the control section is to be 
positioned in the root segment, the INSERT statement must be placed before 
the first OVERLAY statement. 

Note: Control sections that are positioned in a segment must contain all 
address constants to be used during execution unless: 

• The A-type address constants are located in a segment in the path. 

• The V-type address constants used to pass control to another segment are 
located in the path. If an exclusive reference is made, the V -type address 
constant must be in a common segment. 

• The V -type address constants used with the SEGLD and SEGWT macro 
instructions are located in the segment. 

Example: The following INSERT (and OVERLAY) statements specify the 
overlay structure shown in Figure 49: 

II EXEC PGM=HEWL,PARM='OVLY,XREF,LIST' 

IISYSLIN DD * 
INSERT CSA 
INSERT CSB 
OVERLAY ALPHA 
INSERT CSC,CSD 
OVERLAY ALPHA 

'

INSERT CSE 
1* 

Linkage Editor Control Statement Summary 133 



T 
CSA 

t 
CSB 

ALPHA 

esc 

t CSE 

1 
CSD 

1 
Figure 49.0verlay Structure for INSERT Statement Example 

134 OS/VS Linkage Editor and Loader 



LIBRARY Statement 

The LIBRARY statement can be used to specify: 

• Additional automatic call libraries, which contain modules used to resolve 
external references found in the program. 

• Restricted no-call function: External references that are not to be resolved 
by the automatic library call mechanism during the current linkage editor 
job step. 

• Never-call function: External references that are not to be resolved by the 
automatic library call mechanism during any linkage editor job step. 

Combinations of these functions can be written in the same LIBRARY 
statement. 

Format: The format of the LIBRARY statement is: 

LIBRARY t ddname (membername [, ... ]) I 
(externalreference [, ... ]) I 
* ( externalref erence [, ... ])l, ... 

ddname 
is the name of a DD statement that defines a library. 

membername 
is the name of or an alias for a member of the specified library. Only those 
members specified are u,sed to resolve references. 

externalreference 

* 

is an external reference that may be unresolved after primary input 
processing. The external reference is not to be resolved by automatic 
library call. 

indicates that the external reference is never to be resolved; if the 
*(asterisk) is missing, the reference is left unresolved only during the 
current linkage editor run. 

Placement: A LIBRARY statement can be placed before, between, or after 
object modules or other control statements. 

Notes: 

• If the unresolved external symbol is not a member name in the library 
specified, the external reference remains unresolved unless defined in 
another input module. 

• If the NeAL option is specified, the LIBRARY statement cannot be used 
to specify additional call libraries. 

• Members called by automatic library call are placed in the root segment of 
an overlay program, unless they are repositioned with an INSERT 
statement. 

• Specifying an external reference for restricted no-call or never-call by 
means of the LIBRARY statement prevents the external reference from 
being resolved by automatic inclusion of the necessary module from an 
automatic call library; it does not prevent the external reference from being 
resolved if the module necessary to resolve the reference is specifically 
included or is included as part of an input module. 

Linkage Editor Control Statement Summary 135 



Example: The following example shows all three uses of the LIBRARY 
statement: 

II 
IITESTLIB 

EXEC 
DD 

PGM=HEWL,PARM='LET,XREF,LIST' 
DSNAME=TEST,DISP=SHR, ... 

IISYSLIN DD * 
LIBRARY TESTLIB(DATA,TIME),(FICACOMP),*(STATETAX) 

1* 
As a result, members DATE and TIME from the additional library TEST are 
used to resolve external references. FICACOMP and STATET AX are not 
resolved; however, because the references remain unresolved, the LET option 
must be specified on the EXEC statement if the module is to be marked 
executable. In addition, ST ATET AX will not be resolved in any subsequent 
reprocessing by the linkage editor. 

136 OS/VS Linkage Editor and Loader 



NAME Statement 

The NAME statement specifies the name of the load module created from the 
preceding input modules, and serves as a delimiter for input to the load 
module. As a delimiter, the NAME statement allows multiple load module 
processing in one linkage editor job step. The NAME statement can also 
indicate that the load module replaces an identically named module in the 
output module library. 

Format: The format of the NAME statement is: 

I NAME I membername[(R)] 

membername 
is the name to be assigned to the load module that is created from the 
preceding input modules. 

(R) 
indicates that this load module replaces an identically named module in the 
output module library. If the module is not a replacement, the 
parenthesized value (R) should not be specified. 

Placement: The NAME statement is placed after the last input module or 
control statement that is to be used for the output module. 

Notes: 

• Any ALIAS statement used must precede the NAME statement . 

• A NAME statement found in a data set other than the primary input data 
set is invalid. The statement is ignored. 

Example: In the following example, two load modules, RDMOD and 
WRTMOD, are produced by the linkage editor in one job step: 

IISYSLMOD DD DSNAME=AUXMODS,DISP=MOD, ... 
IINEWMOD DD DSNAME=&&WRTMOD,DISP=OLD 
IISYSLIN DD DSNAME=&&RDMOD,DISP=OLD 
II DD * 

1* 

NAME RDMOD(R) 
INCLUDE NEWMOD 
NAME WRTMOD 

As a result, the first module is named RDMOD and replaces an identically 
named module in the output module library AUXMODS; the second module 
is named WRTMOD and is added to the library. 

Linkage Editor Control Statement Summary 137 



ORDER Statement 

The ORDER statement indicates the sequence in which control sections or 
named common areas appear in the output load module. The control sections 
or named common areas appear in the sequence in which they are specified 
on the ORDER statement. When multiple ORDER statements are used, their 
sequence further determines the sequence of the control sections or named 
common areas in the output load module; those named on the first statement 
appear first, and so forth. 

Format: The format of the ORDER statement is: 

ORDER {common area name [(P)] I csectname [(P)]}, ... 

common area name 
is the name of the common area to be sequenced. 

csectname 
is the name of the control section to be sequenced. 

(P) 
indicates that the starting address of the control section or named common 
area is to be on a page boundary within the load module. The control 
sections or common areas are aligned on 4K page boundaries unless the 
ALIGN2 attribute is specified on the EXEC statement. 

Placement: An ORDER statement can be placed before, between, or after 
object modules or other control statements. 

Notes: 

• A control section or common area can be named on only one ORDER 
statement. If the same name is used more than once, except when it is the 
last operand on one ORDER statement and the first operand on the next, 
the name is ignored, as is the balance of the control statement on which it 
appears. 

• The control sections and common areas named as operands can appear in 
either the primary input or the automatic call library, or both. 

• If a control section or named common area is changed by a CHANGE or 
REPLACE control statement and sequencing is desired, specify the new 
name on the ORDER statement. 

Example: In this example, the control sections in the load module LDMOD 
are arranged by the linkage editor according to the sequence specified on 
ORDER statements. The page boundary alignments and the control section 
sequence made as a result of these statements are shown in Figure 50. 
Assume each control section is 1 K in length. 

Note: The control section name PARTl is changed by a CHANGE statement to 
FSTPART. The ORDER statement refers to the control section by its new 
name. 

138 OS/VS Linkage Editor and Loader 



JCL and Control Statements 

//SYSLMOD 
//SYSLIN 

ORDER 
ORDER 
CHANGE 
ORDER 
INCLUDE 

/* 

DD DSNAME=PVTLIB,DISP=OLD, ... 
DO * 
ROOTSEG(P),MAINSEG,SEG1,SEG2 
SEG3( P), ENTRY 1 
PART1(FSTPART) 
FSTPART,SESECTA,SESECTB(P) 
SYSLMOD(LDMOD) 

Figure 50. Output Load Module for ORDER Statement Example 

Output Load Module 

LDMOD 

OK ./ ./ 
ROOTSEG 

./ 
MAINSEG 

'/ 
SEGI 

./ 
SEG2 

4K V 
SEG3 

V 
ENTRY 1 

./ 
FSTPART 

./ 
SESECTA 

8K ./ 
SESECTB 

./ 

Linkage Editor Control Statement Summary 139 



OVERLAY Statement 

The OVERLA Y statement indicates either the beginning of an overlay 
segment, or the beginning of an overlay region. Since a segment or a region is 
not named, the programmer identifies it by giving its origin (or load point) a 
symbolic name. This name is then used on a OVERLAY statement to signify 
the start of a new· segment or region. 

Format: The format of the OVERLAY statement is: 

I OVERLAY I symbol[(REGION)] 

symbol 
is·the symbolic name assigned to the origin of a segment. Thj~ symbol is 
not related to external symbols in a module. 

(REGION) 
specifies the origin of a new region. 

Placement: The OVERLA Y statement must precede the first module of the 
next segment, the INCLUDE statement specifying the first module of the· 
segment, or the INSERT statement specifying the control sections to be 
positioned in the segment. 

Notes: 

• The OVL Y option must be specified on the EXEC statement when 
OVERLA Y statements are to be used. 

• The sequence of OVERLAY statements should reflect the order of the 
segments in the overlay structure from top to bottom, left to right, and 
region by region. 

• No OVERLA Y statement should precede the root segment. 

Example: The following OVERLAY and INSERT statements specify the 
overlay structure in Figure 51. 

II EXEC PGM=HEWL,PARM='OVLY,XREF,LIST' 

IISYSLIN DD DSNAME=&&OBJ, ... 
II DD * 

1* 

INSERT CSA 
OVERLAY ONE 
INSERT CSB 
OVERLAY TWO 
INSERT CSC 
OVERLAY TWO 
INSERT CSD 
OVERLAY ONE 
INSERT CSE,CSF 
OVERLAY THREE(REGION) 
INSERT CSH 
OVERLAY THREE 
INSERT CSI 

140 OS/VS Linkage Editor and Loader 



REGION 1 T 
eSA 

I 
I ONE 

eSB eSE 

+ 
eSF 

I 
I TWO 

..L eSD 

..L 
esc 
1. 

------------I---~~~-------I--------
REGION 2 eSH CSI 

J.. 1-

Figure 5 1. Overlay Structure for OVERLAY Statement Example 

Linkage Editor Control Statement Summary 141 



PAGE Statement 

The PAGE statement aligns a control section or named common area on a 4K 
page boundary in the load module. If the ALIGN2 attribute is specified on 
the EXEC statement for the linkage editor job step, use of the PAGE 
statement aligns the specified control sections or common areas on 2K page 
boundaries within the load module. However, page boundary alignment in the 
executing module can occur only when the operating system supervisor 
includes support for fetch on a page boundary. 

Fonnat: The format of the PAGE statement is: 

I PAGE I {common area name I csectname }, ... 

common area name 
is the name of the common area to be aligned on a page boundary. 

csectname 
is the name of the control section to be aligned on a page boundary. 

Placement: The PAGE statement can be placed before, between, or after 
object modules or other control statements. 

Notes: 

• If a control section or named common area is changed by a CHANGE or 
REPLACE control statement and page alignment is desired, specify the 
new name in the PAGE statement. 

• The control sections and common areas named as operands can appear in 
either the primary input or the automatic call library , or both. 

• Page boundary aligning cannot be used for VS 1 overlay programs. 

Example: In this example, the control sections in the load module LDMOD 
are aligned on page boundaries as specified in the following PAGE statement: 

PAGE ALIGN,BNDRY4K,EIGHTK 

The job control statements and control statements as well as the output load 
module are shown in Figure 52. Assume each control section is 3K bytes in 
length . 

. 142 OS/VS Linkage Editor and Loader 



JCL AND CONTROL STATEMENTS 

//LKED 

//SYSLMOD 
//SYSLIN 

PAGE 
INCLUDE 

/* 

EXEC PGM=HEWL,PARM='ALIGN2, ... ' 

DD DSNAME=PVTLIB,DISP=OLD, ... 
DD * 
ALIGN,BNDRY4K,EIGHTK 
SYSLMOD(LDMOD) 

Figure 52. Output Load Module for PAGE Statement Example 

OUTPUT WAD MODULE 

LDMOD 

OK 
/ ./ 

ALIGN 

/ 
Empty Space 
Due to Boundary 
Alignment 

/ 4K 
BNDRY4K 

/ 
Empty Space 
Due to Boundary 

8K 
Alignment 

./ 
EIGHTK 

l/ 

Linkage Editor Control Statement Summary 143 



REPLACE Statement 

The REPLACE statement specifies one of the following: 

• The replacement of one control section with another. 

• The deletion of a control section. 

• The deletion of an entry name. 

A REPLACE statement can specify more than one function. 

When a control section is replaced, all references within the input module to 
the old control section are changed to the new control section. Any external 

. references to the old control section from other modules are unresolved unless 
changed. 

When a control section is deleted, the control section name is also deleted 
from the external symbol dictionary unless references are made to the control 
section·from within the input module. If there are any such references, the 
control section name is changed to an external reference. External references 
from other modules to a deleted control section also remain unresolved. 

When deleting an entry name, the entry name is changed to an external 
reference if there are any references to it within the same input module. 

Format: The format of the REPLACE statement is: 

REPLACE { csectname -1 [( csectname -2)] I entryname} , ... 

csectname 
is the name of a control section. If only csectname-l i~ used, the control 
section is deleted; if csectname-2 is also used, the first control section is 
replaced with the second. 

entryname 
is the entry name to be deleted. 

Placement: The REPLACE statement must immediately precede either (1) 
the module containing the control section or entry name to be replaced or 
deleted, or (2) the INCLUDE statement specifying the module. The scope of 
the REPLACE statement is across the immediately following module (object 
module or load module). The END record in the immediately following object 
module or the end-of-module indication in the load module terminates the 
action of the REPLACE statement. 

Notes: 

• Unresolved external references are not deleted from the output module 
even though a deleted control section contains the only reference to a 
symbol. 

• When some but not all control sections of a separately assembled module 
are to be replaced, A-type address constants that-refer to a deleted symbol 
will be incorrectly resolved, unless the entry name is at the same 
displacement from the origin in ·both the old and the new control sections. 

• If the control section specified on the REPLACE statement is 
inadvertently misspelled, the control section will not be replaced or 
deleted. Linkage editor output, such as the cross-reference listing and 
module map, can be used to verify each change. 

Example: In the following example, assume that control section INT7 is in 
member LOANCOMP and that control section INT8, which is to replace 

144 OS/VS Linkage Editor and Loader 



INT7, is in data set && NEWINT. Also assume that control section PRIME 
in member LOANCOMP is to be deleted. ' 

//NEWMOD DD 
//OLDMOD DD 
//SYSLIN DD 

ENTRY MAINENT 
INCLUDE NEWMOD 

DSNAME=&&NEWINT,DISP=(OLD,DELETE) 
DSNAME=PVTLIB,DISP=OLD, ... 

* 

REPLACE INT7(INT8),PRIME 
INCLUDE OLDMOD(LOANCOMP) 

/* 

As a result, INT7 is removed from the input module described by the 
OLDMOD DD statement, and INT8 replaces INT7. All references to INT7 in 
the input module now refer to INT8. Any references to INT7 from other 
modules remain unresolved. Control section PRIME is deleted; the control 
section name is also deleted from the external symbol dictionary if there are 
no references to PRIME in LOANCOMP. 

Linkage Editor Control Statement Summary 145 



SETCODE Statement 

The SETCODE statement assigns the specified authorization code to the 
output load module. The authorization code is placed in the directory entry 
for the output load module. • 

The format of the SETCODE statement is as follows: 

I SETCODE I AC( authorizationcode ) 

authorizationcode 
is 1 to 8 decimal digits specifying a value from 0 to 255. 

Placement: A SETCODE statement can be placed before, between, or after 
object modules or other control statements. It must precede the NAME 
statement for the module if one is present. 

Notes: The authorization code assigned by the SETCODE statement 
overrides the authorization code assigned by the AC parameter in the PARM 
field of the EXEC statement. 

If more than one SETCODE statement is encountered in the link edit of a 
load module, the last valid authorization code assigned is used. 

The operand 'AC( )' results in an authorization code of zero. 

Example: In the following example, an authorization code of 1 is assigned to 
the output load module MODt. 

IILKED EXEC PGM=HEWL 
IISYSPRINT DD SYSOUT=A 
IISYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,5)) 
IISYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=OLD 
IISYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS) 
II UNIT=SYSDA 
II DD * 

SETCODE AC(1) 
NAME MOD1(R) 

1* 

146 OS/VS Linkage Editor and Loader 



SETSSI Statement 

The SETSSI statement specifies hexadecimal information to be placed in the 
system status index of the directory entry for the output module. 

Format: The format for the SETSSI statement is: 

I SETSSI I xxxxxxxx 

xxxxxxxx 
represents eight hexadecimal characters (0 through 9 and A through F) to 
be placed in the 4-byte system status index of the output module library 
directory entry. 

Placement: The SETSSI statement can be placed before, between, or after 
object modules or other control statements. It must precede the NAME 
statement for the module, if one is present. 

Note: A SETSSI statement must be provided whenever an IBM-supplied load 
module is reprocessed by the linkage editor. If the statement is omitted, no 
system status index information is present. 

Linkage Editor Control Statement Summary 147 





APPENDIX A: SAMPLE PROGRAMS 

This appendix contains sample linkage editor programs. The material 
presented for each program includes a description of the program, the job 
control language necessary for the linkage editor job step, linkage editor 
control statements (if any), and the linkage editor output. The sample 
programs are: 

• Link editing a COBOL and a FORTRAN object module (COBFORT). 

• Replacing one control section with another by using the REPLACE 
statement (RPLACJOB). 

• Creating a multiple-region overlay program (REGNOVLY). 

• Placing the control statements for the mUltiple region overlay program in a 
partitioned data set, and using them (PARTDS). 

The output for each program includes a cross-reference table and module 
map, and a control statement listing and diagnostic messages, if any. 

Sample Program COBFORT 

Job Control Language 

Sample program COBFORT link edits a COBOL object module and a 
FORTRAN object module to form one load module. The source programs 
were compiled in two steps previous to the linkage editor job step, and the 
output from each compilation was placed in data set && OBJMOD. 

The job control language for the linkage editor job step of this sample 
program is: 

IILKED 
IISYSUT1 
II 
IISYSLIB 
II 
IISYSLMOD 
II 
II 
IISYSPRINT 
IISYSLIN 
1* 
Statement 

EXEC 

SYSUTI 

SYSLIB 

SYSLMOD 

SYSPRINT 

SYSLIN 

EXEC 
DD 

DD 
DD 
DD 

DD 
DD 

Explanation 

PGM=HEWL,PARM= , XREF , 
DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, 
(100,10)) 
DSNAME=SYS1.COBLIB,DISP=SHR 
DSNAME=SYS1.FORTLIB,DISP=SHR 
DSNAME=&&LOADMD(GO),UNIT=SYSDA, 
DISP=(NEW,PASS),SPACE=(TRK, 
( 100, 10, 1 ) ) 
SYSOUT=A 
DSNAME=&&OBJMOD,DISP=(OLD,DELETE) 

Causes the execution of the linkage editor. The PARM field option 
requests a cross-reference table and a module map to be produced on the 
diagnostic output data set. 

Defines a temporary direct-access data set to be used as the intermediate 
data set. 

Defines the automatic call library; the call libraries for COBOL and 
FORTRAN are concatenated; both are used to resolve external references. 

Defines a temporary data set to be used as the output module library; the 
load module is assigned a member name of GO, and is passed to a 
subsequent step for execution. 

Defines the diagnostic output data set, which is assigned to output class A. 

Defines the primary input data set, &&OBJMOD, which contains both 
input object modules; this data set was passed from a previous job step 
and is to be deleted at the end of this job step. 

Appendix A: Sample Programs 149 



Linkage Editor Output 

Figure 53 shows the linkage editor output for COBFORT. The listing header 
indicates the options specified (XREF ,LIST), and the SIZE option values 
used in decimal (196608 for valuel and 65536 for value2). Because XREF is 
specified, the heading CROSS REFERENCE TABLE precedes the rest of 
the output. 

Part 1 of Figure 53 shows the module map for COBFORT. IPCT30 and 
TX652F are the names of the input control sections. The rest of the control 
sections are either from the COBOL automatic call library or from the 
FORTRAN automatic call library. (They can be distinguished by the initial 
three letters; ILB indicates a COBOL control section, IHC a FORTRAN 
control section.) The origin and length (in hexadecimal) of each control 
section follow the name. 

To the right of each control section is a list of the entry names defined in each 
control section. The location (in hexadecimal) of each entry name is also 
given. For example, in control section IHCCOMH2 (the asterisk is not a part 
of the name; it indicates that the control section is from the automatic call 
library), entry name SEQDASD is defined at location l54A. 

Part 2 of Figure 53 shows the cross refe~ence table for COBFORT. The table 
contains the location of any address constant that refers to a symbol defined 
in another control section. The symbol that the address constant refers to is 
also listed, along with the control section in which the symbol is defined. For 
example, at location lFO in control section IPCT30 (determined by using the 
module map, lFO falls between origin 00 and origin 360), an address 
constant refers to symbol IHDFDISP. defined in control section IHDFDISP. 

The entry address is 00 and the total length of the load module is 4AE8. 
Note that the length of the module is rounded up to a doubleword boundary. 

The disposition message at the end of the output in Figure 53 indicates that 
the load module GO has been added to the output module library. The library 
did not contain any other module with that name. The four asterisks identify 
the message. 

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF 
DEFAULT OPTIONS(S) USED - SIZE=(196608,65536) 

CROSS REFERENCE TABLE 

CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION 

IPCT30 00 360 
TX652F 360 1EO 
IHCFCOMH* 540 CD9 

I BCOM# 540 FDIOCS# 5FC INTSWTCH 11FE 
IHCCOMH2* 1220 434 

SEQDASD 154A 
IHDFDISP* 1658 626 
IHCFCVTH* 1C80 119D 

ADCON# 1C80 FCVAOUTP 1D2A FCVLOUTP 1 DBA FCVZOUTP 1FOA 
FCVIOUTP 22B8 FCVEOUTP 27BA FCVCOUTP 29D4 INT6SWCH 2CBB 

IHCFINTH* 2E20 39E 
ARITH# 2E20 ADJSWTCH 30D8 

IHCFIOSH* 31cO 100E 
FIOCS# 31CO 

IHCUOPT * 41DO 8 
IHCTRCH * 41D8 2D4 

I HCERRM 41D8 
IHCUATBL* 44BO 638 

Figure 53 (Part 1 of 2). Linkage Editor Output for Sample Program COBFORT 

150 OS/VS Linkage Editor and Loader 



LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION 
1FO IHDFDISP IHDFDISP 1F4 TX652F TX652F 
410 IBCOM# I HCFCOMH 5FC SEQDASD I HCCOMH2 

1108 ADCON# I HCFCVTH 1100 FIOCS# IHCFIOSH 
110C ARITH# IHCFINTH 112C ADJSWTCH IHCFINTH 
1128 I HCUOPT I HCUOPT 1110 FCVEOUTP IHCFCVTH 
1114 FCVLOUTP I HCFCVTH 1118 FCVIOUTP I HCFCVTH 
111C FCVCOUTP IHCFCVTH 1120 FCVAOUTP I HCFCVTH 
1124 FCVZOUTP I HCFCVTH 10EO I HCCOMH 2 I HCCOMH2 
10E4 I HCERRM IHCTRCH 14A9 IHCFCOMH I HCFCOMH 
14AC I HCFCOMH I HCFCOMH 1268 IHCERRM I HCTRCH 
1264 I BCOM# I HCFCOMH 2C7C I BCOM# I HCFCOMH 
2C78 IHCERRM I HCTRCH 311C I BCOM# I HCFCOMH 
3120 INTSWTCH I HCFCOMH 30D4 INT6SWCH I HCFCVTH 
30DO IHCUOPT I HCUOPT 3128 ADCON# I HCFCVTH 
3124 FIOCS# IHCFIOSH 32F8 I HCERRM IHCTRCH 
3FF8 I HCUATBL I HCUATBL 4004 I BCOM# I HCFCOMH 
43DO I BCOM# I HCFCOMH 43D4 ADCON# IHCFCVTH 
43D8 FIOCS# IHCFIOSH 

ENTRY ADDRESS 00 

TOTAL LENGTH 4AE8 

····GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET 

AUTHORIZATION CODE IS O. 

Figure 53 (Part 2 of 2). Linkage Editor Output for Sample Program COBFORT 

Sample Program RPLACJOB 
Sample program RPLACJOB shows the use of the REPLACE statement to 
replace one control section with another. The source program for the new 
control section (NEWMOD) is processed in a previous job step and passed to 
the linkage editor job step. The control section (SUBONE) to be replaced is 
in an existing load module. Figure 54 shows the linkage editor output for the 
job step that created this load module. Note that the entry address is FO, 
which is the location of the entry point MAINMOD (specified on the ENTRY 
control statement). 

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF, LIST 
DEFAULT OPTION(S) USED - SIZE=(196608,65536) 

IEWOOOO ENTRY MAINMOD 

CONTROL SECTION 

NAME 
SUBONE 

MAINMOD 

ORIGIN LENGTH 
00 EF 

FO 146 

CROSS REFERENCE TABLE 

ENTRY 

NAME LOCATION NAME LOCATION 

SUB1 00 

NAME LOCATION NAME LOCATION 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION 
11c SUBONE SUBONE 

ENTRY ADDRESS FO 

TOTAL LENGTH 238 
•••• GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET 
AUTHORIZATION CODE IS O. 

Figure 54. Linkage Editor Output for Job Step that Created SUB ONE 

Appendix A: Sample Programs 151 



Job Control Language 

The job control language for the replacement job step of this sample program 
is: 

IILKED 
IISYSUTl 
IIINPUTX 
II 
IISYSLMOD 
II 
IISYSPRINT 
IISYSLIN 
II 
II 

EXEC 
DD 
DD 

DD 

DD 
DD 

DD 

PGM=HEWL,PARM='XREF,LIST' 
UNIT=SYSDA,SPACE=(TRK,(100,10» 
DSNAME=LOADLIB,DISP=OLD,UNIT=SYSDA, 
VOL=SER=SCRTCH 
DSNAME=LOADLIB(GO),DISP=OLD,UNIT=SYSDA, 
VOL=SER=SCRTCH 
SYSOUT=A 
DSNAME=&&OBJMOD,DISP=(OLD,DELETE), 
UNIT=SYSDA 

* 
Linkage Editor Control Statements 

/* 
Statement 

EXEC 

SYSUTI 

INPUTX 

SYSLMOD 

SYSPRINT 

SYSLIN 

Explanation 

Causes the execution of the linkage editor. The PARM field options 
request a cross-reference table and a module map (XREF), and a control 
statement listing (LIST) to be produced on the diagnostic output data set. 

Defines a temporary direct-access data set to be used as the intermediate 
data set. 

Defines a permanent data set, used later as additional linkage editor input. 

Defines a permanent data set to be used as the output module library. 
Note that it is the same data set that was described on the INPUTX DD 
statement. The output load module is added to the data set, under the 
member name GO. 

Defines the diagnostic output data set, which is assigned to output class A. 

Defines the primary input data set, &&OBJMOD, which contains the 
object module for the replacement control section. This data set is 
temporary and was passed from a previous job step; it is to be deleted at 
the end of this job. This statement also concatenates the input stream to 
the primary input data set. The input stream contains linkage editor 
control statements that may be followed by a /* statement. 

linkage Editor Control Statements 

The input stream contains the linkage editor control statements that are 
necessary for the replacement of SUBONE with NEWMOn. The control 
statements are: 

ENTRY 
REPLACE 
INCLUDE 

Statement 

ENTRY 

REPLACE 

INCLUDE 

152 OS/VS Linkage Editor and Loader 

MAINMOD 
SUBONE(NEWMOD) 
INPUTX(GO) 

Explanation 

Specifies that the entry point is to be MAINMOD. 

Specifies that control section SUB ONE in the module that follows the 
REPLAOE statement is to be replaced by control section NEWMOD. 

Specifies additional input: member GO of the data set described on the 
INPUTX DD statement. This library member contains the control section 
to be replaced. Since this member name is identical to that specified on the 
SYSLMOD DD statement, the output load module replaces the existing 
library member. 



Linkage Editor Output 

Figure 55 shows the linkage editor output for sample program RPLACJOB. 
The listing header indicates the options specified (XREF and LIST), and the 
SIZE option values used (196608 for valuel and 65536 for value2). 

Because the LIST option is specified, a control statement listing is produced. 
Each control statement is preceded by a special message number, IEWOOOO. 
Because XREF is specified, the heading CROSS REFERENCE TABLE 
precedes the rest of the output. 

The module map shows that control section NEWMOD is now part of the 
load module, and that control section SUBONE has been deleted. The new 
entry address is F8, because NEWMOD is longer than SUB ONE. The total 
length of the load module is 240 bytes. 

The cross reference table indicates that at location 124 in MAINMOD, an 
address constant refers to symbol NEWMOD, defined in control section 
NEWMOD. Note that before the replacement occurred, the address constant 
in MAINMOD referred to SUBONE, defined in control section SUBONE 
(Figure 54). When the REPLACE statement is used to replace a control 
section, references to the old control section from within the same input 
module are also changed. 

The disposition message indicates that the output load module (GO) has been 
added to the output module library. 

Sample Program REGNOVL Y 
Sample program REGNOVL Y creates a multiple-region overlay structure. 
The structyre produced is shown in Figure 56. In this program, some of the 
references between control sections are: 

CSA to CSE 

CSB to CSE 

CSB to CSD 

CSD to CSC 

The reference from CSB to CSE is a valid exclusive call because there is a 
reference to CSE in the segment common to both CSB and CSE; the 
reference from CSD to ese is invalid because there is no reference to esc in 
the common segment. 

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF, LIST 

IEWOOOO 
IEWOOOO 
IEWOOOO 

DEFAULT OPTION(S) USED - SIZE=(196608,65536) 
ENTRY MAINMOD 
REPLACE SUBONE (NEWMOD) 
INCLUDE INPUTX (GO) 

CROSS REFERENCE TABLE 

CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION 
NEWMOD 00 F1 
MAINMOD F8 146 

NAME LOCATION NAME LOCATION 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION 
1 24 NEWMOD NEWMOD 

ENTRY ADDRESS F8 

TOTAL LENGTH 240 
.... GO NOW REPLACED IN DATA SET 
AUTHORIZATION CODE IS O. 

Figure 55. Linkage Editor Output for Sample Program RPLACJOB 

Appendix A: Sample Programs 1 S3 



REGION 1 l' 
CSA >- Root Segment 1 

~ 

Alpha 

CSB ~ Segment 2 CS E Segment 5 

I ..., 1 
Beta 

C SC Segment 3 CSD :> Segment 4 

L ----
REGION 2 Gamma 

Segment 6 CSG Segment 7 

1 
Figure 56. Overlay Tree for Multiple-Region Sample Program REGNOVL Y 

Job Control Language 

The source programs for all the control sections were compiled in previous 
job steps. All of the object modules were placed in the same data set, which 
was passed to the linkage editor job step. 

The job control language for the linkage editor job step of this sample 
program is: 

IILKED EXEC PGM=HEWL,PARM=' XREF, LIST,OVLY, LET , 
IISYSUT1 DD DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, 
II (100,10)) 
IISYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR 
IISYSLMOD DD DSNAME=&&OVLYJB(GO),UNIT=SYSDA, 
II DISP=(NEW,PASS),SPACE=(TRK,(100,10,1)) 
IISYSPRINT DD SYSOUT=A 
IISYSLIN DD DSNAME=&&OBJMOD,DISP=(OLD,DELETE) 
II DD * 
Linkage Editor Control statements 
1* 
Statement 

EXEC 

Explanation 

Causes the execution of the linkage editor. The P ARM field options 
request a cross reference table and a module map (XREF), and a control 
statement listing (LIST) to be produced on the diagnostic output data set. 
The module is to be assigned the overlay attribute (OVL V), and marked 
executable in spite of severity 2 errors (LET). The LET option is specified 
to permit testing of the output module, even though an invalid exclusive 
call is present. The XCAL option allows only valid exclusive calls. 

154 OS/VS Linkage Editor and Loader 



Statement 

SYSUTI Defines a temporary direct-access data set to be used as the intermediate 
data set. 

SYSLIB Defines the automatic call library (SYS1.COBLIB) to be used to resolve 
external references. All control sections from this library are placed in the 
root segment; they remain there unless they are repositioned. 

SYSLMOD Defines a temporary data set to be used as the output module library; the 
load module is assigned the member name GO and is passed to a 
subsequent step for execution. 

SYSPRINT 

SYSLIN 

Defines the diagnostic output data set, which is assigned to output class A. 

Defines the primary input data set, &&OBJMOD, which contains the 
object modules for the overlay structure. This data set is temporary and 
was passed from a previous job step; it is to be deleted at the end of this 
job. This statement also concatenates the input stream to the primary 
input data set. The input stream contains linkage editor control 
statements, which must be delimited by a /* statement. 

Linkage Editor Control Statements 

The input stream contains the linkage editor control statements that structure 
the overlay program. The control statements are: 

INSERTCSA 
ENTRYCSA 
OVERLAY ALPHA 
INSERTCSB 
OVERLAY BETA 
INSERTCSC 
OVERLAY BETA 
INSERTCSD 
OVERLAY ALPHA 
INSERTCSE 
OVERLAYGAMMA(REGION) 
INSERTCSF 
OVERLAY GAMMA 
INSERTCSG 

Appendix A: Sample Programs ISS 



Linkage Editor Output 

Figure 57 shows the linkage editor output for sample program REGNOVLY. 
The list header indicates the options specified (XREF, LIST, OVL Y, and 
LET), and the SIZE option values used (196608 for valuel and 65536 for 
value2). 

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST,OVLY,LET 
DEFAULT OPTION(S) USED - SIZE"'(196608,65536) 

IEWOOOO INSERT CSA 
I EWOOOO ENTRY CSA 
I EWOOOO OVERLAY ALPHA 
IEWOOOO INSERT CSB 
IEWOOOO OVERLAY BETA 
IEWOOOO INSERT CSC 
I EWOOOO OVERLAY BETA 
IEWOOOO INSERT CSD 
I EWOOOO OVERLAY ALPHA 
IEWOOOO INSERT CSE 
IEWOOOO OVERLAY GAMMA(REGION) 
I EWOOOO INSERT CSF 
IEWOOOO OVERLAY GAMMA 
I EWOOOO INSERT CSG 
IEWOl72 2 CSE 
IEW01B2 4 CSC 

CROSS REFERENCE TABLE 

Root Segment t: 
CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION 
$SEGTAB 00 34 1 

CSA 3B 366 
ILBODSPO* 3AO 6FB 
ILBOSTPO* A9B 35 

ILBOSTPl ME 
$ENTAB ADO 30 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
2CO ILBOOSPO ILBODSPO 1 
2CB CSG CSG 7 
200; CSB CSB 

Segment 2: 
CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION 
CSB BOO 360 2 

$ENTAB E60 1B 2 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
054 ILBOOSPO ILBODSPO 1 
D58 CSE CSE 5 
05C CSD CSO 4 

Segment 3: 
CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION 
CSC E7B 336 3 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
10CC ILBODSPO ILBODSPO 1 
10DO ILBOSTPl ILBOSTPO 

Segment 4: 
CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION 
CSD E7B 362 4 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
10CC ILBOOSPO ILBOOSPO 1 
10D4 ILBOSTPl ILBOSTPO 

NAME LOCATION NAME LOCATION NAME LOCATION 

LOCATION 
2C4 
2CC 
204 

REFERS TO SYMBOL IN CONTROL SECTION 
ILBOSTPO ILBOSTPO 
CSE CSE 

.ILBOSTPl ILBOSTPO 

SEG. NO. 
1 
5 

NAME LOCATION NAME LOCATION NAME LOCATION 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
050 ILBOSTPO ILBOSTPO 
D60 ILBOSTPl ILBOSTPO 

NAME LOCATION NAME LOCATION NAME LOCATION 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
lOC8 ILBOSTPO ILBOSTPO 1 

NAME LOCATION NAME LOCATION NAME LOCATION 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
lOCB ILBOSTPO ILBOSTPO 
10DO CSC CSC 

Figure 57 (Part 1 of 2). Linkage Editor Output for Sample Program REGNOVLY 

156,OS/VS Linkage Editor and Loader 



CROSS REFERENCE TABLE 

SegmentS: 
CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION 
CSE BOO 336 5 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
D54 ILBODSPO ILBODSPO 1 , D50 ILBOSTPO ILBOSTPO 1 
D58 ILBOSTP1 ILBOSTPO 

Segment 6: 
CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION 
CSF 11EO 2FA 6 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
1430 ILBOSTPO ILBOSTPO 1 1434 ILBOSTP1 ILBOSTPO 1 

Segment 7: 
CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION 
CSG 11EO 336 7 

LOCATION REFERS TO SYMBOL IN C;ONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 
1434 ILBODSPO ILBODSPO 1 1430 ILBOSTPO ILBOSTPO 1 
1438 ILBOSTP1 ILBOSTPO 

ENTRY ADDRESS 38 

TOTAL LENGTH 1518 
•••• GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET 
AUTHORIZATION CODE IS O. 

DIAGNOSTIC MESSAGE DIRECTORY 
IEW0172 ERROR - EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED. 
IEW0182 ERROR - INVALID EXCLUSIVE CALL FROM SEGMENT NUMBER PRINTED TO SYMBOL PRINTED. 

Figure 57 (Part 2 of 2). Linkage Editor Output for Sample Program REGNOVL Y 

Because the LIST option was specified, the control statement listing is 
produced. Each control statement is preceded by a special message number, 
IEWOOOO. 

The control statement listing is followed by two diagnostic message numbers 
(IEW0172 and IEW0182). The explanation of the messages and the 
information following each message is given at the end of the'output in the 
diagnostic message directory. 

The output for each segment contains a module map and a cross-reference 
table. The segments are listed as they appear in the overlay structure, top to 
bottom, left to right, and region by region. (Note that this is also the sequence 
in which the OVERLAY and INSERT statements must be given.) 

Within each segment, a module map lists the control sections in ascending 
sequence according to their assigned origin. The origin, length, and segment 
number is listed for each control section, along with any entry names andthe 
location where each entry name is defined. For example, the root segment has 
five control sections: $SEGTAB, which is always the first control section in 
the root segment; CSA, which is from the object module input; ILBODSPO 
and ILBOSTPO, which are from the automatic call library and were not 
repositioned; and $ENT AB, which, when present, is always the last control 
section in any segment (as also in segment 2). One entry name is defined, 
ILBOSTPI at location D58 in control section ILBOSTPO. 

The cross reference table for each segment contains all of the address 
constants that refer to symbols defined in other control sections. The location 
of the address constant is followed by the symbol referred to, the control 
section in which the symbol is defined, and the segment in which the control 
section is located. For example, in the root segment, an address constant at 
location llEO refers to symbol CSG, which is defined in control section CSG 

Appendix A: Sample Programs 157 



in segment 7. Although the region is not given, the overlay tree in Figure 56 
shows that segment 7 is in region 2. 

At the end of the output for all the segments is the entry address and total 
length. The entry address is 38, which is the origin of CSA, the specified entry 
point. The totalle~gth given refers to main storage used, not device storage. 
The length given, therefore, is that of the longest path. The longest path is 
that formed by the root segment and segments 2, 4, and 7; the length given is 

1 1518. 

However, if the given lengths of the control sections in each segment are 
added, the result is 1403. The discrepancy exists because the given lengths do 
not include the padding bytes necessary to make control sections begin on a 
doubleword address (multiple of 8). For example, in the root segment, the 
length of $SEGTAB is 34; however, the origin of CSA which follows 
$SEGTAB is 38 (decimal 56). Four additional bytes are needed so that the 
origin of CSA is a multiple of 8. 

The disposition message indicates that the load module GO has been added to 
the output module library. The library did not contain any other module by 
that name. The four asterisks identify the message. 

The last item in the output for this sample program is the diagnostic message 
directory. The directory contains the text for the message numbers listed after 
the control statement listing. The directory must be correlated to the 
information following the number to interpret the message. 

For example, message IEW0172 is an error message which indicates that an 
exclusive call was made from the segment number printed (2) following the 
message number to the symbol printed (CSE). The output for segment 2 
indicates that this call is at location 058 in control section CSB, and the 
symbol is defined in control section CSE in segment 5. This is the valid 
exclusive call from CSB to CSE described earlier. (If XCAL were specified, a 
warning message would be issued instead of an error message.) 

If an invalid exclusive call is detected, message IEW0182 appears as shown. 
This is also an error message; it indicates that an invalid exclusive call was 
made from segment 4 to symbol CSC. This call is at location E78 in control 
section CSO, and the symbol is defined in control section CSC in segment 3. 
This is the invalid exclusive call from CSO to CSC, also described earlier. 

158 OS/VS Linkage Editor and Loader 



Sample Program P ARTDS 

Job Control Language 

IIPARTDS 
IICTLG 
IISYSUT2 
II 
IISYSPRINT 
IISYSIN 

JOB 
EXEC 
DD 

DD 
DD 

.1 

.1 
ADD 
NUMBER 

INSERT CSA 
ENTRY CSA 
OVERLAY ALPHA 
INSERT CSB 
OVERLAY BETA 
INSERT CSC 
OVERLAY BETA 
INSERT CSD 
OVERLAY ALPHA 
INSERT CSE 

Sample program P ARTDS illustrates that linkage editor control statements 
can be placed in a separate data set and then used as input. For convenience, 
the control statements are those for sample progarm REGNOVL Y, described 
previously. These control statements are placed in a partitioned data set. 
When the member that contains the control statements is referenced, the 
linkage editor uses the control statements to produce the overlay structure 
shown earlier in Figure 56. 

Figure 58 shows the input statements for the IEBUPDTE utility program used 
to place the control statements in a partitioned data set. 

The source programs for all the control sections were compiled in previous 
job steps. All the object modules were placed in the same data set, which was 
passed to the linkage editor job step. The input modules are those used for 
sample program REGNOVLY. 

The job control language for the overlay program job step of this sample 
program is: 

IILKED 
IISYSUT1 
II 
IIOVLYCDS 
II 
IISYSLIB 
IISYSLMOD 
II ( 

IISYSPRINT 
IISYSLIN 
II 

EXEC 
DD 

DD 

DD 
DD 

DD 
DD 
DD 

PGM=HEWL,PARM='XREF,LIST,OVLY,LET' 
DSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, 
(100,10» 
DSNAME=OVLYLIB,UNIT=SYSDA, 
VOL=SER=SCRTCH,DISP=OLD 
DSNAME=SYS1.COBLIB,DISP=SHR 
DSNAME=&&OVLYJB(GO),UNIT=SYSDA, 
DISP=(NEW,PASS),SPACE=(TRK,(100,10,1 » 
SYSOUT=A 
DSNAME=&&OBJMOD,DISP=(OLD,DELETE) 

* 
( Linkage Editor Control Statements ) 

1* 

(accounting information) 
PGM=IEBUPDTE,PARM=(NEW) 
DSNAME=OVLYLIB,UNIT=2314,VOL=SER=DA028,DISP=(NEW,KEEP), 
SPACE=(TRK,(10,5,2»,DCB=(LRECL=80,BLKSIZE=80,RECFM=F) 
SYSOUT=A 

* 
NAME=OVLY,LEVEL=OO,SOURCE=OO,LIST=ALL 

NEW1=10,INCR=5 

OVERLAY GAMMA(REGION) 
INSERT CSF 
OVERLAY GAMMA 
INSERT CSG 

.1 ENDUP 
1* 
Figure 58. Input Statements for IEBUPDTE Utility Program 

Appendix A: Sample Programs 1 S9 



Statement 

EXEC 

SYSUTI 

OVLYCDS 

SYSLIB 

SYSLMOD 

SYSPRINT 

SYSLIN 

Explanation 

Causes the execution of the linkage editor. The PARM field options 
request a cross-reference table and a module map (XREF), and a 
control statement listing (LIST) to be produced on the diagnostic 
output data set. The output load module is to be assigned the overlay 
attribute (OVLY), and is to be marked executable despite severity 2 
errors (LET). 

Defines a temporary direct-access data set to be used as the 
intermediate data set. 

Defines a permanent data set to be used later as additional input; this 
is the partitioned data set which was created by IEBUPDTE and 
contains the control statements for structuring the overlay program. 

Defines the automatic call library (SYSl.COBLIB) to be used to 
resolve external references. All control sections from this library are 
placed in the root segment; they remain there unless they are 
repositioned. 

Defines a temporary data set to be used as the output module library; 
the load module is to be assigned the member name GO, and is 
passed to a subsequent step for execution. 

Defines the diagnostic output data set, which is assigned to output 
class A. 

Defines the primary input data set, &&OBJMOD, which contains 
the object modules for the overlay structure. This data set is 
temporary and was passed from a previous job step; it is to be deleted 
at the end of this job. This statement also concatenates the input 
stream to the primary input data set. The input stream contains 
linkage editor control statements that must be delimited by a /* 
statement. 

Linkage Editor Control Statements 
I 

Linkage Editor Output 

The input stream contains an INCLUDE statement, as follows: 

INCLUDE OVLYCDS(OVLY) 

This statement causes the control statements to be read from the partitioned 
data set described on the OVL YCDS DD statement. The member name of 
the statements is OVL Y, the same name used in the ADD statement for the 
utility program. 

The output for this sample program is identical to the output from the 
REGNOVL Y sample program, with one execption. The list of control 
statements begins with the statement 

IEWOOOO INCLUD OVLYCDS(OVLY) 

This statement is followed by a list of the control statements read from the 
additional input data set specified in this INCLUDE statement. The rest of 
the output is identical to that shown in Figure 57. 

160 OS/VS Linkage Editor and Loader 



APPENDIX B: INVOKING THE LINKAGE 
EDITOR 

The linkage editor can be invoked by a problem program at execution time 
through the use of one of the following macro instructions. 

[symbol] [LINK] EP= linkeditname 
PARAM=(optionlist [,ddname list]), 
VL=l 

[symbol] [ATTACH] EP= linkeditname 
PARAM=(optionlist [,ddname list]), 
VL=l 

I [symbol] I [LOAD] I EP= linkeditname 

I [symbol] I [XCTL] I EP= linkeditname 

EP= linkeditname 
specifies the symbolic name of the linkage editor. The entry point at which 
execution is to begin is determined by the control program (from the 
library directory entry). 

PARAM=( optionlist [, ddname list] ) 
specifies, as a sublist, address parameters to be passed from the problem 
program to the linkage editor. The first fullword in the address parameter 
list contains the address of the option and attribute list for the load module. 
The second fullword contains the address of the ddname list. If standard 
ddnames are to be used, this list may be omitted. 

option list 
specifies the address of a variable length list containing the options and 
attributes. This address must be written even though no list is provided. 

The option list must begin on a halfword boundary. The two high-order 
bytes contain a count of the number of bytes in the remainder of the 
list. If no options or attributes are specified, the count must be zero. The 
option list is free form with each field separated by a comma. No blanks 
or zeros should appear in the list. 

ddnamelist 
specifies the address of a variable length list containing alternative 
ddnames for the data sets used during linkage editor processing. If 
standard ddnames are used, this operand may be omitted. 

The ddname list must begin on a halfword boundary. The two 
high-order bytes contain a count of the number of bytes in the 
remainder of the list. Each name of less than 8 bytes must be left 
justified and padded with blanks. If an alternate ddname is omitted from 
the list, the standard name will be assumed. If the name is omitted 
within the list, the 8-byte entry must contain binary zeros. Names can 
be omitted from the end by merely shortening the list. 

Appendix B: Invoking the Linkage Editor 161 



Thesequence of the 8-byte entries in the ddname list-i,s asJo"9ws,~/ 

Entry Alternate Name For: 

SYSLIN 

2 member name (the name under which the output load module is stored in the 
SYSLMOD data set; this entry is used if the name is not specified on the 
SYSLMOD DD statement or if there is no NAME control statement) 

3 SYSLMOD 

4 SYSLIB 

5 not applicable 

6 SYSPRINT 

7 not applicable 

8 SYSUTI 

9-11 not applicable 

12 SYSTERM 

VL 
specifies that the sign bit is to be set to 1 in the last fullword of the address 
parameter list. 

When the linkage editor completes processing, a condition code is returned in 
register 15 (see "Linkage Editor Return Code"). 

162 .OS/VS Linkage Editor and Loader 



APPENDIX C: STORAGE REQUIREMENTS AND 
CAPACITIES 

Capacities 

This appendix describes the record-processing capacities of the linkage editor, 
the types of devices that can be used for the intermediate data set (SYSUTt), 
and the amount of virtual storage that the linkage editor requires. 

The minimum storage requirement and processing capacities for the linkage 
editor program are described in Figure 59. To increase the capacity for 
processing external symbol dictionary records, intermediate text records, 
relocation dictionary records, and identification records, increase value t 
and/ or value2 of the SIZE option. Output text record length can be increased 
by increasing the SIZE option values, but in no case can the record length 
ever exceed the track length for the device. The number of overlay segments 
and regions that can be processed is not affected by increasing the storage 
available. 

Function 

Virtual storage allocated (in bytes) 

Maximum number of entries in composite 
external symbol dictionary (CESD) 

Maximum number of intermediate test 
records 

Maximum number of relocation 
dictionary (RLD) records 

Maximum number of segments per 
program 

Maximum number of overlay regions 

Capacity 

64K 

558 

372 

192 

255 

per program 4 

Maximum blocking factor for input 
object modules (number of 80-column 
card images per physical record) 101 

Maximum blocking factor for SYSPRINT 
output (number of 121-character logical records 
per physical record) 101 

Output text record length (in bytes): 

On IBM 2314, 2319 Storage Facility 

On IBM 2305 Fixed Head Storage Facility 

On IBM 3330 Disk Storage Facility 

On IBM 3340 Disk Storage Facility 

On IBM 3344 Direct Access Storage Device 

On IBM 3350 Direct Access Storage 

30722 

30722 

30722 

30722 

30722 

30722 

1 From 74K to 9999K for value1 of the SIZE option, the blocking factor for input object modules and 
SYSPRINT output is 40. 

2 The maximum output text record length is achieved when value2 of the SIZE parameter is at least twice the 
record length size. For example, on a 3330, 12288 byte records are written when value2 is at least 24576. 

Figure 59. Linkage Editor Capacities for Minimal SIZE Values (64K,6K) 

Appendix C: Storage Requirements and Capacities 163 



For the composite external symbol dictionary, the number of entries permitted 
can be computed by subtracting, from the maximum number given in Figure 
59, one entry for each of the following: 

• A data definition name (ddname) specified in LmRARY statements. 

• A data definition name (ddname) specified in INCLUDE statements. 

• An ALIAS statement. 

• A symbol in REPLACE or CHANGE statements that are in the largest 
group of such statements preceding a single object module in the input to 
the linkage editor. 

• The segment table (SEGTAB) in an overlay program. 

• An entry table (ENT AB) in an overlay program. 

To compute the number of intermediate text records that will be produced 
during processing of either program, add ~>De record for each group of x 
bytes within each control section, where x is the record size for the 
intermediate data set. The minimum value for x is 1024; a maximum is 
chosen depending on the amount of storage available to the linkage editor and 
the devices allocated for the intermediate and output data sets. 

The number of text records that can be handled by a linkage editor program is 
less than the maximums given in Figure 59 if the text of one or more control 
sections is not in sequence by address in the input to the linkage editor. 

The total length of the data fields of the CSECT Identification records 
associated with a load module cannot exceed 32K (32,768) bytes. To 
determine the number of bytes of identification data contained in a particular 
load module, use the following formula: 

SIZE = 269 + 16A + 31B + 2C +I(n + 6) 

where: 
A = the number of compilations or assemblies by a processor supporting 

CSECT Identification that produced the object code for the module. 

B = the number of pre-processor compiler compilations by a processor 
supporting CSECT Identification that produced the object code for the 
module. 

C = the number of control sections in the module with END statements that 
contain identification data. 

I = the number of control sections in the module that contain user-supplied 
data supplied during link editing by the optional IDENTIFY control 
statement. 

n = the average number of characters in the data specified by IDENTIFY 
control statements. 

Notes: 

• The size computed by the formula includes space for recording up to 19 
HMASPZAP modifications. When 750/0 of this space has been used, a new 
251-byte record is created the next time the module is reprocessed by the 
linkage editor. 

• To determine the approximate number of records involved, divide the 
computed size of the identification data by 256. 

164 OS/VS Linkage Editor and Loader 



Intermediate Data Set 

Example: A module contains 100 control sections produced by 20 unique 
compilations. Each control section is identified during link editing by 8 
characters of user data specified by the IDENTIFY control statement. The 
size of the identification data is computed as follows: 

A= 20 
1=100 
n=8 

269 + 320 + 1400 = 1989 bytes 

If the optional user data specified on the IDENTIFY control statements is 
omitted, the size can be reduced considerably, as computed below: 

269 + 320 = 589 bytes 

If maximum number of downward calls made from a segment to other 
segments lower in its path can never exceed 340. To compute the maximum 
number of downward calls allowed, subtract 12 from the SYSLMOD record 
size and then divide the difference by 12. Examples of maximum downward 
ca11s are 84 for aSYSLMOD record size of 1024 bytes and 340 for a 
SYSLMOD record size of 6144 bytes. 

The intermediate data set (SYSUTl) is used by the linkage editor to hold 
intermediate data records during processing. The linkage editor places 
intermediate data in this data set when storage allocated for input data or 
certain forms of out-of -sequence text is exhausted. 

The following direct-access devices, if supported by the system, can be used 
for this data set:-

IBM 2314 Storage Facility 

IBM 2319 Storage Facility 

IBM 2305 Fixed Head Storage Facility 

IBM 3330 Disk Storage Facility 

IBM 3330-1 Disk Storage Facility 

IBM 3340 Disk Storage Facility 

IBM 3344 Direct Access Storage Device 

IBM 3350 Direct Access Storage 

Linkage Editor Storage Requirements 

The linkage editor requires a minimum of 74K of storage for execution. 

The linkage editor program is in overlay format and uses the overlay 
supervisor. For VS1, the storage required by the overlay supervisor must be 
added to the minimum real storage requirement for the linkage editor. The 
storage requirement for the overlay supervisor is 512 bytes. 

The storage requirement given above is for VSl and includes the storage 
required by the access method modules used by the linkage editor. The 
linkage editor uses the basic sequential and basic partitioned access methods 
(BSAM and BP AM, respectively). 

Since the overlay supervisor is in the link pack area in VS2, the storage 
requirements for the overlay supervisor should not be included when 
determining the size of the editor's region. 

Appendix C: Storage Requirements and Capacities 165 





PART 2. LOADER 

The Loader is a processing program. It combines basic editing and loading 
functions of the linkage editor and program fetch in one job step. Therefore, 
the load function is equivalent to the link edit-go function. The loader can be 
used for compile-load and load jobs. 

The loader will load object modules produced by a language processor and 
load modules produced by the linkage editor into virtual storage for 
execution. Optionally, it will search a call library (SYSLIB) or a resident link 
pack area, or both, to resolve external references. The loader does not 
produce load modules for program libraries. 

The functional characteristics, compatibility and restrictions, performance 
considerations, and storage considerations of the loader are described in the 
following sections. 

Functional Characteristics 
The loader can be used with VS 1 and VS2. The loader is re-enterable and, 
therefore, can reside in the resident link pack area. 

The loader combines the following basic functions of the linkage editor and 
program fetch: 

1. Resolution of external references between program modules. 

2. Optional inclusion of modules from a call library (SYSLIB) or from a link 
pack area, or from both (Figures 60 and 61). (Inclusion of modules from a 
call library or the link pack area is performed, if requested, when external 
references remain unresolved after processing the primary input to the 
loader. If both are requested, the link pack area is searched first.) 

3. Automatic deletion of duplicate copies of program modules (Figure 62). 
(The first copy is loaded and all succeeding requests use that copy.) 

4. Relocation of all address constants so that control may be passed directly 
to the assigned entry point in virtual storage. 

The diagnostics produced by the loader are similar to those of the linkage 
editor. 

Part 2. Loader 167 



FL----r/ 
Object and/or 
Load Modules ./ 

A 

B 

C 

SYSLIN F-/----r/ 
Object or 
Load Modules 

I------f'"./ 
D 
E 

F 

G 

'"'---~/ 
SYSLIB - c·alled automatically when references 

were unresolved at the end of input 
from SYSLIN. 

Figure 60. Loader Processing-SYSLIB Resolution 

.......... " 
Object and/or 

User's Region 

Load Modules ---------
I'.... 

A .. 
B 

~-------~~ 
A 

C 

....... 

SYSLIN 

"'""'t-------,~ 
Object or 
Load Modules 

~"1------t 
D 

E 

F 

H 
/' 

/' 
/' 

/' 

,~ 

/' 
/' 

/' 
/' 

/' 

/' 

SYSLIB - Called automatically when 
references remain unresolved 
at the end of input from 
SYSLIN and after searching 
the link pack area. 

c) 
H# 

,~ 

Link Pack Area 

\ 
\ 
\ 

J 
r..--------- ~4 
D~----//I// 

_// 

E ..--- ,/ J 

// --- / F"- ,/ 
./ 

G ..,."'" 

Virtual Storage 

Figure 61. Loader Processing-Link Pack Area and SYSLIB Resolution 

168 OS/VS Linkage Editor and Loader 

A 

B 

C 

D 

E 

F 

G 

Virtual Storage 

References made in B to 
D, E, F, and G are 
resolved to the link 
pack area. 

Modules in link pack 
area must be 
re-enterable. 



./ ./' -- ---- --"" -Object and/or 
....... -.... ... 

t--, /" 
Load Modules V' 

(Loader ~ " E 
./ :/-' 

'D E/ /' The first copy is 
D • A loaded 
A B 
B C 
C 
D l/ 

SYSLIN Virtual Storage 

Figure 62. Loader Processing-Automatic Editing 

Compatibility and Restrictions 

TIlDe Sharing Option (TSO) 

The loader accepts the same basic input as the linkage editor: 

1. All object modules that can be processed by the linkage editor can be input 
to the loader. 

2. All load modules produced by the linkage editor can be input to the loader 
(except load modules edited with the NE option). 

The loader supports the following linkage editor options: MAP, LET, NCAL, 
SIZE, and TERM. All other linkage editor options and attributes are not 
supported, but, if used, they will not be considered as errors. A message will 
be listed on SYSLOUT indicating that they are not supported. The supported 
options are specified in the P ARM field of the EXEC statement, or with the 
LINK, ATTACH, LOAD, or XCTL macro instruction. In addition to the 
supported linkage editor options, the loader provides several other options. 
All loader options are described under "EXEC Statement" in the section 
"Using the Loader." 

The loader does not process linkage editor control statements (for example, 
INCLUDE, NAME, OVERLAY, etc.). If they are used, they will not be 
treated as errors and a message will be listed on SYSLOUT indicating that the 
control statements are not supported. 

The loader and the linkage editor are bound by the same input conventions. 
(These conventions are discussed in Part 1 of this publication.) In addition, 
the loader can accept load modules in the SYSLIN data set and object 
modules from a data area in virtual storage. 

The loader does not use auxiliary storage space for work areas; that is, there 
is no loader function corresponding to the linkage editor's creation of 
intermediate work data sets or output load modules. 

When the loader is used under TSO (VS2 only), it is invoked by the loader 
prompter, a program that acts as an interface between the user and the 
operating system and the loader. Under TSO, execution of the loader and 
definition of the data sets used by the loader are described to the system 
through use of the LOADGO command that causes the prompter to be 
executed. Operands of the LOADGO command can also be used to specify 
the loader options a job requires. 

Complete procedures for using the LOADGO command to load and execute 
an object module are given in the OS/VS2 TSO Terminal User's Guide. 

Part 2. Loader 169 



Processing Object Modules in Virtual Storage 

Loaded Program Restrictions 

The loader can act as an interface with a compiler that has the ability to 
construct a data area of one or more object modules in virtual storage as an 
alternative to a data set on a secondary storage volume (such as a tape or 
disk). Such a compiler passes the loader a description of the internal data 
area, which the loader then processes as primary input. This internal data area 
replaces external SYSLIN data set input to the loader. 

Instead of placing text records for the object module in the internal data area, 
the compiler can pass pointers to preloaded text. The loader can then perform 
its relocation and linkage functions on the preloaded text itself; text is not 
moved during processing. 

Any loaded program that issues an XCTL macro instruction or an IDENTIFY 
macro instruction in a VS 1 environment will not execute properly. It is 
recommended that any such program be processed by the linkage editor. 

If an IDENTIFY macro instruction is issued by the loaded program, 
IDENTIFY returns a 'OC' code in register 15. This code means that the entry 
point address is not within an eligible load module and that the entry point 
was not added. 

In a VS 1 environment, any data set opened by a loaded program should be 
closed by the program before execution is complete. 

170 OS/VS Linkage Editor and Loader 



USING THE LOADER 

Input for the Loader 

EXEC Statement 

This section discusses how to prepare an input deck for the loader and how to 
invoke the loader; it also describes the output from the loader. 

The input deck for the loader must contain job control language statements 
for the loader and, optionally, for the loaded program (Figure 63). 

Iiname JOB parameters 
Iiname EXEC PGM=LOADER, 

PARM=(parameters) 
IISYSLIN DD parameters 
IISYSLIB DD parameters 
IISYSLOUT DD parameters 
IISYSTERM DD parameters 

II (optional DD statements and data 
II required for loaded program) 

Figure 63. Input Deck for the Loader-Basic Format 

(optional) 

(optional) 
(optional) 
(optional) 

Only the EXEC statement and the SYSLIN DD statement are required for a 
loader step. The JOB statement is required if the loader is the first step in the 
job. 

The EXEC statement is used to call the loader and to specify options for the 
loader and for the loaded program. The loader is called by specifying 
PGM=IEWLDRGO or PGM=LOADER (see "Invoking the Loader"). 
Loader and loaded program options are specified in the P ARM field of the 
EXEC statement. The P ARM field must have the following format: 

,PARM=' [ loaderoption [, ... ][fprogramoption[, ... ]]' 

Note that the loaded program options, if any, must be separated from the 
loader options by a slash (f). If there are no loader options, the program 
options must begin with a slash. The entire P ARM field may be omitted if 
there are no loader or loaded program options. 

Parameters must be enclosed in single quotes when special characters (f and 
=) are used. 

The loader options are: 

MAP 
The loader produces a map of the loaded program that lists external names 
and their absolute storage addresses on the SYSLOUT data set. (If the 
SYSLOUT DD statement is not used in the input deck, this option is 
ignored.) The module map is described in "Loader Output" in this section. 

NOMAP 
A map is not produced. 

Using the Loader 171 



RES 
An automatic search of the link pack area queue is to be made. This search 
is always made after processing the primary input (SYSLIN), and before 
searching the SYSLIB data set. When this option is specified, the CALL 
option is automatically set. 

NORES 
No automatic search of the li~k pack area queue is to be made. 

CALL 
An automatic search of the SYSLIB data set is to be made. (If the SYSLm 
DO statement is not included in the input deck, this option is ignored.) 

NOCALL I NCAL 
An automatic search of the SYSLIB data set will not be made. When this 
option is specified, the NORES option is automatically set. 

LET 
The loader will try to execute the object program even though a severity 2 
error condition is found. (A severity 2 error condition is one that could 
make execution of the loaded program impossible.) 

NOLET 
The loader will not try to execute the loaded program if a severity 2 error 
condition is found. 

SIZE=size 
specifies the size, in bytes, of dynamic virtual storage that can be used by 
the loader (see Appendix F). 

EP=name 
specifies the external name to be assigned as the entry point of the loaded 
program. This parameter must be specified if the entry point of the loaded 
program is in an input load module. For FORTRAN, ALGOL, and PL/I, 
these entry points must be MAIN, IHIFSAIN, and IHENTRY, 
respectively, unless changed by compiler options. 

NAME=name 
specifies the name to be used to identify the loaded program to the system. 
If this parameter is not used, the loaded program will be named * *GO. 

PRINT 
Informational and diagnostic messages are produced on the SYSLOUT 
data set. 

NOPRINT 
Informational and diagnostic messages are not produced on the SYSLOUT 
data set. SYSLOUT is not opened. 

TERM 
Numbered diagnostic messages are to be sent to the SYSTERM data set. 
Although intended to be used when operating under the Time Sharing 
Option (TSO), the SYSTERM data set can be used to replace or 
supplement the SYSLOUT data set at any time. (If the SYSTERM 00 
statement is not included in the input deck, this option is ignored.) 

NOTERM 
Numbered diagnostic messages are not to be sent to the SYSTERM data 
set. 

The default options are: NOMAP, RES~ CALL, NOLET, SIZE = lOOK, 
PRINT, NAME=**GO and NOTERM. For VS1, the default options 

172 OS/VS Linkage Editor and Loader 



DD Statements 

NOMAP, RES, CALL, NOLET, SIZE = 100K, and P~INT may be changed 
during system generation by using the LOADER macro instruction. 

The following are examples of the EXEC statement. In these examples, X 
and Yare parameters required by the loaded program. 

IILOAD EXEC PGM=LOADER 
IILOAD EXEC PGM=HEWLDRGO, 
II PARM= 'MAP, EP=FIRST/X,Y , 
IILOAD EXEC PGM=LOADER,PARM='/X,Y' 
IILOAD EXEC PGM=LOADER,PARM=NOPRINT 
IILOAD EXEC PGM=LOADER,PARM=(MAP,LET) 

I 
IILOAD EXEC PGM=LOADER, 
II PARM='NAME=NEWPROG,TERM,NOPRINT' 

For further details in coding the EXEC statement refer to OS/VSl JCL 
Reference and OS/VS2 JCL. 

The loader uses four DD statements named SYSLIN, SYSLIB, SYSLOUT, 
and SYSTERM. (For VS 1, these ddnames can be changed during system 
generation with the LOADER macro instruction.) The SYSLIN DD 
statement must be used in every loader job. The other three are optional. 

The following considerations apply to the DCB parameter of SYSLIN, 
SYSLIB, and SYSLOUT. 

• For better performance, BLKSIZE and BUFNO can be specified. 

• If BUFNO is omitted, BUFNO=2 is assumed. 

• Any value given to BUFNO is assumed for NCP (number of channel 
programs). 

• If RECFM=U is specified, BUFNO=2 is assumed, and BLKSIZE and 
LRECL are ignored. 

• RECFM=V is not accepted. 

• RECFM=FBSA is always assumed for SYSLOUT. 

• If RECFM is omitted, RECFM=F is assumed for SYSLIN and SYSLIB. 

• If BLKSIZE is omitted, the value given to LRECL is assumed. 

• LRECL= 121 is assumed for SYSLOUT unless the loader is operating 
under the Time Sharing Option (TSO), when LRECL=81 is assumed. 

• If LRECL is omitted, LRECL= 80 is assumed for SYSLIN and SYSLIB. 

• If OPTCD=C is used to specify chained scheduling, an additional2K 
(2048 bytes) of virtual storage is needed in the user's region if the 
necessary data management routines are not resident. 

Note: The SYSTERM data set will always consist of unblocked 81-character 
records with BUFNO=2 and RECFM=FSA. Because these values are fixed, 
the DCB parameter need not be used. 

In addition to the DD statements used by the loader, any DD statements and 
data required by the loaded program must be included in the input deck. 

Using the Loader 173 



SYSLIN DD Statement 

SYSLm DD Statement 

The SYSLIN 00 statement defines the input data for the loader. This input 
can be either object modules produced by a language translator, or load 
modules produced by the linkage editor, or both. The data sets defined by the 
SYSLIN 00 statement can be either sequential data sets or members of a 
partitioned data set, or both. The DSNAME parameter for a partitioned data 
set must indicate the member name, that is, 
DSNAME=dsname(membername). Concatenation can be used to include 
more than one module in SYSLIN. 

The following are examples of the SYSLIN DD statement. The first example 
defines a member of a previously cataloged partitioned data set: 

IISYSLIN DD DSNAME=OUTPUT.FORT(MOD12), 
II DISP=OLD,DCB=BLKSIZE=3200 

The second example defines a sequential data set on magnetic tape: 

IISYSLIN DD DSNAME=PROG15,UNIT=2400,DISP=(OLD, 
II KEEP),VOLUME=(PRIVATE,RETAIN, 
II SER=MCS167) 

The third example defines a data set which was the output of a previous step 
in the same job: 

IISYSLIN DD DSNAME=*.COBOL.SYSLIN,DISP=(OLD, 
II DELETE) 

The fourth example shows the concatenation of three data sets.· The first two 
data sets are members of different partitioned data sets; the first is an object 
module and the second is a load module. The third data 8~t is in the input 
stream following a SYSLIN DO statement (see "Loaded Program Data" in 
this section). 

IISYSLIN 
II 
II 
II 
II 

DD 

DD 

DD 

DSNAME=PGMLIB.SET1(RFS1 ),DISP=OLD, 
DCB=(BLKSIZE=3200,RECFM=FB) 
DSNAME=PGMLIB.SET2(ABC5),DISP=OLD, 
DCB=RECFM=U 
DDNAME=SYSIN 

The SYSLIB data set contains IBM-supplied or user-written library routines 
to be included in the loaded program. The data set is searched when 
unresolved references remain after processing SYSLIN and optionally 
searching the link pack area. 

The SYSLffi data set is used to resolve an external reference when the 
following conditions exist: the external reference must be (1) a member name 
or an alias of a module in the data set, and (2) defined as an external name in 
the external symbol dictionary of the module with that name. If the 
unresolved external reference is a member name or an alias in the library, but 
is not an external name in that member, the member is processed but the 
external reference remains unresolved unless subsequently defined. 

The data set defined by the SYSLIB DD statement must be a partitioned data 
set that contains either object modules or load modules, but not both. 
Concatenation may be used to include more partitioned data sets in SYSLIB. 
All concatenated data sets must contain the same type of modules (object or 
load). 

174 OS!VS Linkage Editor and Loader 



SYSLOUT 00 Statement 

SYSTERM DO Statement 

Loaded Program Data 

The following are examples of the SYSLIB DD statement. The first example 
defines a cataloged partitioned data set that can be shared by other steps: 

IlsYSLIB DD DSNAME=SYS1.ALGLIB,DISP=SHR 

The second example shows the concatenation of two data sets: 

IISYSLIB DD DSNAME=SYS1.PL1LIB,DISP=SHR 
II DD DSNAME=LIBMOD.MATH,DISP=OLD 

The SYSLOUT DD statement is used for error and warning messages and for 
an optional map of external references (see "Loader Output" in this section). 
The data set defined by this DD statement must be a sequential data set. The 
DeB parameter can be used to specify the blocking factor (BLKSIZE) of this 
data set. For better performance, the number of buffers (BUFNO) to be 
allocated to SYSLOUT can also be specified. 

The following are examples of the SYSLOUT DD statement. The first 
example specifies the system output unit: 

IISYSLOUT DD SYSOUT=A 

The second example defines a sequential data set on a 1443 printer: 

IISYSLOUT DD UNIT=1443,DCB=(BLKSIZE=121, 
II BUFNO=4) 

The SYSTERM DD statement defines a data set that is used for numbered 
diagnostic messages only. When the loader is being used under the Time 
Sharing Option (TSO) (VS2 only) of the operating system, the SYSTERM 
DD statement defines the terminal output data set. However, SYSTERM can 
also be used at any time to replace or supplement the SYSLOUT data set. 
Because the SYSTERM data set is not opened unless the loader must issue a 
diagnostic message, using SYSTERM instead of SYSLOUT can reduce loader 
processing time. 

When the SYSTERM data set replaces the SYSLOUT data set, the numbered 
messages in the SYSTERM data set are the only diagnostic output; when 
SYSTERM supplements the SYSLOUT data set, the numbered messages 
appear in both data sets, and optional diagnostic and informational output, 
such as a list of options or a module map, can be obtained on SYSLOUT. 

The DeB parmeters for SYSTERM are fixed and need not be specified. The 
SYSTERM data set always consists of unblocked 81-character records with 
BUFNO=2 and RECFM=FSA. 

The following example shows the SYSTERM DD statement when used to 
specify the system output unit: 

IlsYSTERM DD SYSOUT=A 

Loaded program data and loader data can both be specified in the input 
reader in VS1 and VS2. Loaded program data can be defined by aDD 
statement following the loader data. 

Figure 64 shows the loading of a previously compiled FORTRAN problem 
program. The program to be loaded (loader data) follows the SYSLIN DD 
statement. The loaded program data follows the FT05F001 DD statement. 

Using the Loader 175 



Invoking The Loader 

//LOAD 
//LDR 
//SYSLIB 
//SYSLOUT 
//FT06FOOl 
//SYSLIN 

JOB 
EXEC 
DD 
DD 
DD 
DD 

MSGLEVEL=l 
PGM=LOADER,PARM=MAP 
DSNAME=SYS1.FORTLIB,DISP=SHR 
SYSOUT=A 
SYSOUT=A 

* 
( Loader data) 

/* 
//FTOSFOOl DD * 

( Loaded program data) 

/* 

Figure 64. Loader and Loaded Program Data in VS 1 or VS2 Input Stream 

The loader can be referred to by either its program name, IEWLDRGO, or its 
alias, LOADER. The loader can be invoked through the EXEC statement, as 
described in "Input for the Loader," or through one of the following macro 
instructions. 

[symbol] LINK EP= loademame, 
PARAM=(optionlist [,dtiname list]), 
VL=l 

[symbol] ATTACH EP= loademame , 
PARAM=(optionlist [,dtiname list]), 
VL=l 

I [symbol] I LOAD I EP= loademame 

I [symbol] I XCTL I EP= loademame 

EP= loadername 
specifies the symbolic name of the loader. The entry point at which 
execution is to begin is determined by the control program from the library 
directory entry. 

P ARAM=( optionlist [, ddname list ] ) 
specifies, as a sublist, address parameters to be passed to the loader. The 
first fullword in the address parameter list contains the address of the 
option list for the loader and/or loaded program. The second fullword 
contains the address of the ddname list. If standard ddnames are to be 
used, this list may be omitted. 

option list 
specifies the address of a variable length list containing the loader and 
loaded program options. This address must be written even though no 
list is provided. 

The option list must begin on a halfword boundary. The two high-order 
bytes contain a count of the number of bytes in the remainder of the 
list. If no options are specified, the count must be zero. 

176 OS/VS Linkage Editor and Loader 



VL 

The option list is free form, with the loader and loaded program options 
separated by a slash (/), and with each option separated by a comma. 
No blanks or zeros should appear in the list. 

ddname list 
specifies the address of a variable length list containing alternative 
ddnames for the data sets used during loader processing. If the standard 
ddnames are used, this operand may be omitted. 

The format of the ddname list is identical to the format of the ddname 
list for invoking the linkage editor; the 8-byte entries in the list are as 
follows: 

Entry Alternate N.ame for: 

1 SYSLIN 
2 not applicable 
3 not applicable 
4 SYSLIB 
5 not applicable 
6 SYSLOUT 

7-11 not applicable 
12 SYSTERM 

specifies that the sign bit is to be set to 1 in the last fullword of the address 
parameter list. 

Figure 65 shows an Assembler language program that uses the LINK macro 
instruction to refer to the loader. 

PARM 
OPTIONS 
LENGTH 
SAVEAREA 

SAVE 

LA 

(14,12) 

13,SAVEAREA 

initialize-save 
registers and point 
to new save area 

LINK EP=LOADER,PARAM=(PARM),VL=l 

L 
RETURN 

DS OH 

13,4( 13) 
(14,12),T 

DC AL2(LENGTH) 
DC C'NOPRINT,CALL/X,Y,Z' 
EQU *-OPTIONS 
DS 18F 

END 

length of options 
loader and loaded 
program options 
Save area 

Figure 65. Using the LINK Macro Instruction to Refer to the Loader 

If desired, the loader may be used to process a program but not execute it. To 
invoke just the portion of the loader that processes input data, specify either 
the name HEWLOAD or the name HEWLOADR with a LOAD and CALL 
macro instruction. 

Using the Loader:177 



HEWLOAD, which is used with VS2 only, will both load and identify the 
program. HEWLOAD returns the address of an 8-character name in register 
1. This name can be used with an ATTACH, LINK, LOAD, or XCTL macro 
instruction to invoke the loaded program. A user program that is going to 
attach a loaded program, should avoid specifying SZERO=NO in its 
ATTACH macro. If SZERO=NO must be specified, the user program should 
issue a LOAD for the loaded program before performing the ATTACH and a 
DELETE for the loaded program after the ATIACH. 

HEWLOADR, which can be used with VS1 or VS2, will load the program but 
will not identify it. HEWLOADR returns the entry point of the loaded 
program in register O. Register 1 points to two full words: the first points to 
the begining of storage occupied by the loaded program; the second contains 
the size of the loaded program. This location and size can then be used in a 
FREEMAIN macro instruction to free the storage occupied by the loaded 
program when it is no longer needed. 

Figure 66 shows an Assembler language program that uses the LOAD and 
CALL macro instructions to refer to HEWLOADR. Figure 67 shows an 
Assembler language program that uses the LOAD and CALL macro 
instructions to refer to HEWLOAD. 

For further information on the use of these macro instructions, refer to 
OS/VSl Supervisor Services and Macro Instructions or OS/VS2 Supervisor 
Services and Macro Instructions. 

178 OS/VS Linkage Editor and Loader 



* 

* 

FREE 

PARMl 
OPTIONS 1 
LENGTH 1 

PARM2 
OPTIONS2 
LENGTH 2 
SAVEAREA 

SAVE (14,12 ),T 

ST 13,SAVEAREA+4 
LA 13,SAVEAREA 

LOAD 
LR 
CALL 

LR 
LR 
LR 

DELETE 
CH 
BH 
LR 

CALL 

EP=HEWLOADR 
15,0 
( 1 5 ) , ( P ARM 1 ), VL 

7,15 
5,0 
6,1 

EP=HEWLOADR 
7,=H'4' 
FREE 
15,5 

( 1 5 ) , ( P ARM 2 ) , VL 

L 0,4(6) 
L 1 ,O( 6) 
FREEMAIN R,LV=(O),A=(l) 

L 
RETURN 
DS OH 

13,4( 13) 
(14,12),T 

DC AL2(LENGTH1) 
DC C'NOPRINT,CALL' 
EQU *-OPTIONS1 
DS OH 
DC AL2(LENGTH2) 
DC C'X,Y,Z' 
EQU *-OPTIONS2 
DS 18F 

END 

initialize-save registers and 
point to new save area 

load the loader 
get its entry point address 
invoke the loader 

save return code 
save entry to loaded program 
save pointer to list containing 
start address and length 
delete loader 
verify successful loading 
negative branch 
loading successful-get entry 
point address for CALL 
invoke program 

get length into register ° 
get start address 
delete loaded program 

length of loader options 
loader options 

length of loaded program options 
loaded program options 

save area 

Figure 66. Using the LOAD and CALL Macro Instructions to Refer to HEWLOADR (Loading Without Identification) 

Using the Loader 179 



PARM1 
OPTIONS 1 
LENGTH 1 

PARM2 
OPTIONS2 
LENGTH2 
SAVEAREA 
PGMNAM 

SAVE 

ST 
LA 

LOAD 
LR 
CALL 
LR 
MVC 
DELETE 
CH 
BH 
LINK 

L 
RETURN 
DS 
DC 
DC 
EQU 
DS 
DC 
DC 
EQU 
DS 
DS 

END 

(14,12),T initialize-save registers and 
point to new save area 

13,SAVEAREA+4 
13,SAVEAREA 

EP=HEWLOADR load the loader 
15,0 get its entry point address 
(15),(PARM1 ),VL invoke the loader 
7,15 save the return code 
PGMNAM(8),0(1) save program name 
EP=HEWLOAD delete the loader 
7,=H'4' verify successful loading 
ERROR negative branch 
EPLOC=PGMNAM,PARM=(PARM2),VL=1 

13,4(13) 
(14,12),T 
OH 
AL2 ( LENGTH 1 ) 
C'MAP' 
*-OPTIONS1 
OH 
AL2(LENGTH2) 
C'X,Y,Z' 
*-OPTIONS2 
18F 
2F 

loading successful, 
invoke program 

length of loader options 
loader options 

length of loaded program 
loaded program options 

save area 
program name 

options 

Figure 67. Using the LOAD and CALL Macro Instructions to Refer to HEWLOAD (Loading With Identification) 

Loader Output 
Loader output consists of a collection of diagnostics and error messages, and 
of an optional storage map of the loaded program. This output is produced in 
the data set defined by the SYSLOUT DD and SYSTERM DD statements. If 
these are omitted, no loader output is produced. 

SYSLOUT output includes a loader heading, and the list of options and 
defaults requested through the P ARM field of the EXEC statement. The 
SIZE stated is the size obtained, and not necessarily the size requested in the 
P ARM field. Error messages are written when the errors are detected. After 
processing is complete an explanation of the error is written. Loader error 
messages are similar to those of the linkage editor and are listed in the 
OS/VS Message Library: Linkage Editor and Loader Messages. 

SYSTERM output includes only numbered warning and error messages. 
These messages are written when the errors are detected. After processing is 
complete, an explanation of each error is written. 

The storage map includes the name and absolute address of each control 
section and entry point defined in the loaded program. Each map entry 

180 OS/VS Linkage Editor and Loader 



marked with an asterisk (*) comes from the data set specified on the 
SYSLIB 00 statement. Two asterisks (**) indicate the entry was found in the 
link pack area; three asterisks (***) indicate the entry comes from text that 
was preloaded by a compiler. The TYPE column indicates what each entry on 
the map is used for: SO-control section, LR-Iabel reference, and PR-pseudo 
register. 

The map is written as the input to the loader is processed, so all map entries 
appear in the same sequence in which the input ESO items are defined. The 
total size and storage extent of the loaded program are also included. For 
PL/I programs, a list is written showing pseudo-registers with their addresses 
assigned relative to zero. Figure 68 shows an example of a module map. In a 
VS2 environment, the loader issues an informational message when the 
loaded program terminates abnormally. 

OS/VS LOADER 

OPTIONS USED-PRINT, MAP, NOLET, CALL, NORES, SIZE=424176 

NAME TYPE ADDR NAME TYPE ADOR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR 

SAMPL2B SO 161 EO SAMPL2BA SO 16EC8 IHEMAIN SD 17CF8 IHENTRY SD 17DOO IHESPRT SD 17010 
SYSIN SD 17048 IHEVQC • SD 17080 IHEVQCA • LR 17D80 IHEVQB · SD 17FD8 IHEVQBA* LT 17F08 
IHEDIA • SO 183cO IHEDIAA • LR 183CO IHEOIAB • LR 183C2 IHEVPE • SD 18608 IHEVPEA* LR 18608 
IHEVPA • SO 18870 IHEVPAA • LR 18870 IHEVFC · SD 189DO IHEVFCA • LR 189DO IHEVPC * SD 189F8 
IHEVPCA • LR 189F8 IHEVFE · SD 18BE8 IHEVFEA • LR 18BE8 IHEVSC • SD 18COS IHEVSCA* LR 18C08 
IHEONC · SD 18CB8 IHEONCA • LR 18CB8 IHEDOA • SD 18F30 IHEDOAA • LR 18F30 IHEDOAB* LR 18F32 
IHEOMA • SD 19010 IHEDMAA • LR 19010 IHEVFD · SD 19108 IHEVFDA • LR 19108 IHEVFA * SD 19160 
IHEVFAA • LR 19160 IHEVPB • SD 19248 IHEVPBA • LR 19248 IHEXIS • SD 193FO IHEXISO* LR 193FO 
IHEIOB • SD 19488 IHEIOBA • LR 19488 IHEIOBB • LR 19490 IHEIOBC • LR 19498 IHEIOBO* LR 194M 

IHESARC • LR 1A9CB IHESAOD • LR 1A9DE IHESAFF • LR 1AA18 IHEPRT • SD 1AB70 IHEPRTA* LR 1AB70 
IHEBEGA • LR 1AE28 IHEERR • SD 1AE68 IHEERRD • LR 1AE68 IHEERRC • LR 1AE72 IHEERRB* LR 1AE7C 
IHEERRA * LR 1AE86 IHEERRE * LR 1B4E2 IHEIOF • SD 1B580 IHEIOFB • LR 18580 IHEIOFA* LR 1B582 
IHEITAZ * LR 1B81E IHEITAX • LR 1B82A IHEITAA • LR 1B83E IHEDCN • SD 18860 IHEDCNA* LR 1B860 
IHEDCNB * LR 1B862 IHEIOD * SD 1BA50 IHEIODG • LR 1BA50 IHEIODP • LR 18A52 IHEIODT* LR 1BB4A 
IHEVTB • SD 1BCFO IHEVTBA • LR 1 BCFO IHEVQA * SO 1B078 IHEVQAA • LR 1BD78 

IHEQINV PR 00 IHEGERR PR 4 SAMPL2BB PR 8 SAMPL2BC PR C IHEQSPR PR 10 
SYSIN PR 14 IHEQLSA PR 18 IHEQLWO PR 1C IHEQLW1 PR 20 IHEQLW2 PR 24 
IHEQLW3 PR 28 IHEQLW4 PR 2C IHEQLWE PR 30 IHEQLCA PR 34 IHEQVDA PR 38 
IHEQFVO PR 3C IHEQCFL PR 40 IHEQFOP PR 48 IHEQADC PR 4c IHEQXLV PR 50 
IHEQEVT PR 58 IHEQSLA PR 60 IHEQSAR PR 64 IHEQLWF PR 68 IHEQRTC PR 6C 
IHEQSFC PR 70 

IEW1001 IHEUPBA 
IEW1001 IHEUPAA 
IEW1001 IHETERA 
IEW1001 IHEM91C 
IEW1001 IHEM91B 
IEW1001 IHEM91A 
IEW1001 IHEODOD 
IEW1001 IHEVPFA 
IEW1001 IHEVPDA 
IEW1001 IHEOBNA 
IEW1001 IHEVSFA 
IEW1001 IHEVSBA 
IEW1001 IHEVCAA 
IEW1001 IHEVSAA 
IEW1001 IHEDNBA 
IEW1001 IHEUPBB 
IEW1001 IHEUPAB 
IEW1001 IHEVSEB 

TOTAL LENGTH 5068 
ENTRY ADDRESS 17DOO 

IEW1001 WARNING - UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED) 

Figure 68. Module Map Format Example 

Using the Loader 181 





APPENDIX D: SAMPLE INPUT FOR THE LOADER 

Figure 69 shows an input deck for a load job. A previously assembled 
program, MASTER, is to be loaded. The SYSLOUT, SYSLIB, and 
SYSTERM DD statements are not used. 

IILOAD 
II 
IISYSLIN 

JOB 
EXEC 
DO 

MSGLEVEL=1 
PGM=LOADER 
DSNAME=MASTER,DISP=OLD 

(DD statements and data required for execution of MASTER) 

1* 
Figure 69. Input Deck for a Load Job 

Figure 70 shows an input deck for a compile-load job. The COBOL F . 
(lEQCBLOO) compiler is used for the compile step. The loaded program 
requires the SYSOUT, T AXRA TE, and SYSIN DD statements. 

IIJOB 
IICOBOL 
IISYSPRINT 
IISYSPUNCH 
IISYSUT1 
IISYSUT2 
IISYSUT3 
IISYSUT4 
IISYSLIN 
II 
IlsYSIN 

JOB 
EXEC 
DO 
DO 
DO 
DD 
DO 
DO 
DD 

DD 

(source program) 

II LOAD 
II 
IISYSLIN 
II 
IISYSLOUT 
IISYSLIB 
IISYSOUT 
IITAXRATE 
IISYSIN 

EXEC 

DO 

DO 
DO 
DO 
DO 
DD 

(Data for Loaded Program) 

1* 

22,MCS,MSGLEVEL=1 
PGM=IEQCBLOO,PARM=MAP,REGION=86K,RD=R 
SYSOUT=A 
UNIT=SYSCP 
UNIT=SYSDA,SPACE=(TRK,( 100,10)) 
UNIT=SYSDA,SPACE=(TRK,(100,10)) 
UNIT=SYSDA,SPACE=(TRK,( 100,10)) 
UNIT=SYSDA,SPACE=(TRK,(100,10)) 
DSNAME=&&LOADSET,DISP=(MOD,PASS), 
UNIT=SYSSQ,SPACE=(TRK,(30,10)) 

* 

PGM=LOADER,PARM='MAP,LET' ,COND=(5,LT, 
COBOL) 
DSNAME=*.COBOL.SYSLIN,DISP=(OLD, 
DELETE) 
SYSOUT=A 
DSNAME=SYS1.COBLIB,DISP=SHR 
SYSOUT=A 
DSNAME=TAXRATE,DISP=OLD 

* 

Figure 70. Input Deck for a Compile-Load Job 

Figure 71 shows the compilation and loading of three modules. In the first 
three steps, the FORTRAN H (lEKAAOO) compiler is used to compile a main 
program, MAIN, and two subprograms, SUB! and SUB2. Each of the object 
modules is placed in a sequential data set by the compiler and passed to the 
loader job step. In addition to the FORTRAN library, a private library, 
. MYLIB, is used to resolve external references. In the loader job step, MYLIB 
is concatenated with the SYSLIB DD statement. SUBI and SUB2 are 
included in the program to be loaded by concatenating them with the 
SYSLIN DD statement. The SYSTERM statement is used to define the 
diagnostic output data set. The loaded program requires the FTO 1 FOO 1 and 
FTI0FOOI DD statements for execution, and it does not require data in the 
input stream. 

Appendix D: Sample Input for the Loader 183 



JOB IIJOBX 
IISTEP1 EXEC PGM=IEKAAOO,PARM='NAME=MAIN,LOAD' 

IISYSLIN 
IISYSIN 

DD 
DD 

DSNAME=&&GOFILE,DISP=( ,PASS),UNIT=SYSSQ 

* 
(Source module for MAIN) 

1* 
IISTEP2 EXEC PGM=IEKAAOO,PARM='NAME=SUB1,LOAD' 

IISYSLIN 
IISYSIN 

DD 
DD 

DSNAME=&&SUBPROG1,DISP=( ,PASS),UNIT=SYSSQ 

* 
(Source module for SUB 1) 

1* 
IISTEP3 EXEC PGM=IEKAAOO,PARM='NAME=SUB2,LOAD' 

IISYSLIN 
IISYSIN 

DD 
DD 

DSNAME=&&SUBPROG2,DISP=( ,PASS),UNIT=SYSSQ 

* 
(Source module for SUB2) 

1* 
IISTEP4 
IISYSTERM 
IISYSLIB 
II 

EXEC 
DD 
DD 
DD 

IISYSLIN DD 
II DD 
II DD 
IIFT01F001 DD 
IIFT10F001 DD 
1* 

PGM=LOADER 
SYSOUT=A 
DSNAME=SYS1.FORTLIB,DISP=OLD 
DSNAME=MYLIB,DISP=OLD 
DSNAME=*.STEP1.SYSLIN,DISP=OLD 
DSNAME=*.STEP2.SYSLIN,DISP=OLD 
DSNAME=*.STEP3.SYSLIN,DISP=OLD 
DSNAME=PARAMS,DISP=OLD 
SYSOUT=A 

Figure 71. Input Deck for Compilation and Loading of the Three Modules 

184 OS/VS Linkage Editor and Loader 



APPENDIX E: LOADER RETURN CODES 

The return code of a loader step is determined by the return codes resulting 
from loader processing and from loaded program processing. 

The return code indicates whether errors occurred during the execution of the 
loader or of -the loaded program. The return code can be tested through the 
COND parameter of the JOB statement specified for this job and/or the 
COND parameter of the EXEC statement specified in any succeeding job 
step. (For details, see the publication OS/VSl JCL Reference or OS/VS2 
JCL. Figure 72 shows the return codes. 

Loaded 
Loader Program 

Return Return Return 
Code Code 1 Code Conclusion or Meaning 

0 0 0 Program loaded successfully, and execution of the 
loaded program was successful. 

4 0 The loader found a condition that may cause an 
8 (LET) 0 error during execution, but no error occurred 

during execution of the loaded program. 

4 0 4 Program loaded successfully, and an error occurred 
during execution of the loaded program. 

4 4 The loader found a condition that may cause an 
8 (LET) 4 error during execution, and an error did 

occur during execution of the loaded program. 

8 0 8 Program loaded successfully, and an error occurred 
during execution of the loaded program. 

4 ( 8 The loader found a condition that may cause an 
8 (LET) 8 error during execution, and an error did occur during 

execution of the loaded program. 

8 The loader found a condition that could make 
execution impossible. The loaded program was not 
executed. 

12 0 12 Program loaded successfully, and an error occurred 
during execution of the loaded program. 

4 12 The loader found a condition that may cause an 
8 (LET) 12 error during execution, and an error did occur during 

execution of the loaded program. 

12 The loader could not load the program successfully, 
execution impossible. 

16 0 16 Program loaded successfully, and the loaded program 
found a terminating error. 

4 16 The loader found a condition that may cause an 
8 (LET) 16 error during execution, and a terminating error was 

found during execution of the loaded program. 

16 The loader could not load program, execution 
impossible. 

1 Error diagnostics (SYSLOUT and/or SYSTERM data set) for the loader will show the severity of errors 
found by the loader. 

Figure 72. Return Codes 

Appendix E: Loader Return Codes 185 





APPENDIX F: STORAGE CONSIDERATIONS 

The loader requires virtual storage space for the following items: 

• Loader code. 

• Data management access methods. 

• Buffers and tables used by the loader (dynamic storage). 

• Loaded program (dynamic storage). 

Region size includes all four of the above items; the' SIZE option refers to the 
last two items. 

For the SIZE option, the minimum required virtual storage is 4K plus the size 
of the loaded program. This minimum requirement grows to accommodate the 
extra table entries needed by the program being loaded. For example: 
FORTRAN requires at least 3K plus the size of the loaded program, and 
PL/I needs at least 8K plus the size of the loaded program. Buffer number 
(BUFNO) and blocksize (BLKSIZE) could also increase this minimum size. 
Figure 73 shows the appropriate storage requirements in bytes. 

The maximum virtual storage that can be used is whatever virtual storage is 
available up to 8192K. 

All or part of the storage required is obtained from user storage. If the access 
methods are made resident at IPL time, they are allocated in system storage. 
However, 6K is always reserved for system use. 

In a VS2 environment the loader code could also be made resident in the link 
pack area. If so, it requires the following space: HEWLDRGO, the 
control/interface module (alias LOADER), approximately 700 bytes; 
HEWLOADR, the loader processing portion, approximately 13,664 bytes. 

The size of the loaded program is the same as if the program had been 
processed by the linkage editor and program fetch. 

The loader does not use auxiliary storage space for work areas. 

Appendix F: Storage Considerations 187 



Consideration 

Approximate 
Virtual Storage 
R~ulremeDts 
(in bytes) 

Loader Code· Control 700 VS 1 
2000VS2 

Loader Code Processing 13664 VS 1 
14000VS2 

Conaents 

Data Management 

Object Module Buffers 
and DECBs 

6K BSAM 

BUFNO(BLKSIZE + 24) Concatenation of 

Load Module Buffer 304 
and DECBs 

SYSTERMDCB 
Buffers and DECBs 

312 

different BLKSIZE and BUFNO 
must be considered. (Minimum 
BUFNO=2) 

Allocated if TERM 
option is specified 

SYSLOUT Buffers 
and DECBs 

BUFNO(BLKSIZE + 24) Buffer size rounded up 
to integral number of double 
words. (Minimum BUFNO=2) 

Size of program being 
loaded 

Program Size Program size is 

Each external relocation 8 
dictionary entry 

Each external symbol 20 

Largest ESD number 4n 
n is the largest ESD 
number in any input 
module 

Fixed Loader Table Size 1260 

Condensed Symbol 
Table 

System 
Requirements 

12n 
n is the total number 
of control sections 
and common areas in 
the loaded program 

1600 VSl 
4OOOVS2 

Figure 73. Virtual Storage Requirements 

188 OSl¥S Unkage Editor and Loader 

restricted only by available virtual 
storage 

Allocated in increments 
of 32 entries 

Subtract 88 if NO PRINT is 
specified 

Built only if TSO is 
operating and space 
is available 



APPENDIX G: LOAD MODULE FORMAT 

The format of a load module built by the linkage editor is shown in Figure 74. 

In writing the output load module to the SYSLMOD data set, the linkage 
editor does not use the track overflow feature. When moving or copying load 
modules, it is recommended that the track overflow feature not be used on 
the target data set, as errors may occur in fetching the load modules for 
execution. 

j
TTR_P2, if TEST option and SYM records present 

l
TTR-P2, if no TEST option 

l
TTR-T3, if OVLY option used TTR-T3 if no OVLY option 

.lTTR-N/Sl, if SCTR I ' 
,option + 

I SYM I CESO I I lOR I CTL I I SEGTAB I I SCTR I ~ r lst TXT I ENTAB , (continued) 

t Present if TEST t presentr OVL Y + Present if SCTR + Present if OVL Y option 
option and SYM 
records present 

option and more 
than 1 segment 

option is used used and more than 1 
segment 

I RLO I I CTRL,RLO'"jjCTL,RLD,TXT,ENTAB 

+ Carries EOS if 
following ENT AB 

II RLO I I 

tCarries EOM 
if this is RLD 
for Last TXT 

ITTR-N/S: TTR of the note list or scatter/translation table. Used for 
modules in scatter load format or overlav structure only. 

2TTR-P: TTR of the first block of the named member'(load module). 

3TTR-T: TTR of the ftrst block of text. 

Figure 74. Load Module Format 

CTL I I TXT 

t Carries EOM 
ifno RLDs 
for Last TXT 

t 
TTR-N/Sl, if OVLY option 
and more than 1 segment 

TTR I 

t Present if OVL Y option 
and more than 1 segment 

Appendix G: Load Module Format 189 





APPENDIX H: SIZE AND REGION PARAMETER 
GUIDELINES 

This appendix gives guidelines for determining an appropriate REGION 
parameter value and SIZE parameter values for a linkage editor job step. 

FJrSt--determine Value2 of the SIZE parameter. 

Value2=[6K 161441flg I (a+b) I (c*d) I (c*e)] 

where: 

a is the length of the load module to be built 

b is 0, if the length of the load module to be built is < 40K 

b is 4K, if the length of the load module to be built is ~ 40K 

c is an integer equal to or greater than 2, such that c *d or c *e is S lOOK 

d is the track capacity of the SYSLMOD device 

e is the block size of the SYSLMOD data set 

f is the length of the largest text record in load module input 

g is the track capacity of the SYSUTI device 

Second--determine Value 1 of the SIZE parameter. 

Value 1 = h + j + k 

Value 1 must range between hand 9999K or 999999 

where: 
h is the design point of the Linkage Editor being used: 

h = 64K 

j is the excess of Value2 over 6K 

j = Value2 - 6K 

k is the additional storage required to support the blocking factor for 
SYSLIN, object module libraries, and SYSPRINT: 

Blocking Factor k (bytes) 

5 to 1 OK 
10 to 1 18K 
40 to 1 28K 

Third--determine the REGION parameter. 

REGION = Valuel + 10K 

Appendix H: SIZE and REGION Parameter Guidelines 191 





GLOSSARY 

This glossary includes definitions developed by the American 
National Standards Institute (ANSI). This material is 
reproduced from the American National Dictionary for 
Information Processing, copyright 1977 by the Computer and 
Business Equipment Manufacturers Association, copies of 
which may be purchased from the American National 
Standards Institute, 1430 Broadway, New York, New York 
10018. ANS definitions are preceded by an asterisk(*). 

*address: An identification, as represented by a name, label, 
or number, for a register, location in storage, or any other 
data source or destination such as the location of a station in 
a communication network; any part of an instruction that 
specifies the location of an operand for the instruction. 

address constant: A value, or an expression representing a 
value, used in the calculation of storage addresses; can be 
used for branching or retrieving data. 

address translation: The process of changing the address of a 
data item or an instruction from its virtual address to the real 
storage address of the location where it will reside. See also 
dynamic address translation. 

a6as name: An alternate name or entry point for a load 
module that is also entered in the output module library 
directory entry along with the member name. 

automatic Ubrary caD mechanism: The process whereby control 
sections are processed by the linkage editor or loader to 
resolve external references to members of partitioned data 
sets not resolved by primary input processing. 

auxiliary storage: Data storage other than virtual storage; for 
example, storage on magnetic tape or direct-access devices. 

common area: A control section used to reserve a virtual 
storage area that can be referred to by other modules; may be 
either named or unnamed (blank). 

common segment: A segment upon which two exclusive 
segments are dependent. 

control section: That part of a program (instructions and 
data) specified by the programmer to be a relocatable unit, all 
elements of which are to be loaded into adjoining storage 
locations for execution. Abbreviated CSECT. 

control section name: The symbolic name of a control section. 

demand paging: Transfer of a page from external page storage 
to real storage at the time it is needed for execution. 

dOWDward reference: A reference made from a segment to 
another segment lower in the same path; i.e., farther from the 
root segment. 

dynamic address translation (OAT): (1) The change of a virtual 
storage address to a real storage address during execution of 
an instruction. See also address translation. (2) A hardware 
feature that performs the translation. 

entry name: A name within a control section that defines an 
entry point, and can be referred to for execution by any 
control section. 

exclusive reference: A reference between exclusive segments; 
that is, a reference from a segment in storage to an external 
symbol in a segment that will cause overlay of the calling 
segment. 

exclusive segments: Segments in the same region of an overlay 
program, neither of which is in the path of the other; they 
cannot be in virtual storage simultaneously. 

external name: A name that can be referred to by any control 
section or separately assembled or compiled module; i.e., a 
control section name or an entry name. 

external page storage: The portion of auxiliary storage that is 
used to contain pages. 

external reference: (1) A reference to a symbol that is defined 
as an external name in another module. (2) An external 
symbol that is defined in another module; that which is 
defined in the Assembler language by an EXTRN statement 
or by a V -type address constant, and is resolved during 
linkage editing. See also weak external reference. 

external symbol: A control section name, entry point name, or 
external reference that is defined or referred to in a particular 
module. A symbol contained in the external symbol 
dictionary . 

inclusive reference: A reference between inclusive segments; 
that is, a reference from a segment in storage to an external 
symbol in a segment that will not cause overlay of the calling 
segment. 

inclusive segments: Segments in the same region of an overlay 
program that are in the same path; they can be in virtual 
storage simultaneously. 

invaUd exclusive reference: An exclusive reference in which a 
common segment does not contain a reference to the symbol 
used in the exclusive reference. 

Ubrary: In this publication, it is a partitioned data set that 
always contains named members. 

load module: The output of the linkage editor; a program in a 
format suitable for loading into virtual storage for execution. 

load module buffer: An entity of virtual storage used by the 
linkage editor to read input load module text records and 
possibly to retain the text information in storage for 
subsequent writing of the output load module text records. 

.... odule: A program unit that is discreet and identifiable with 
respect to compiling, combining with other units, and 
loading, for example, the input to, or output from, an 
assembler, compiler, linkage editor, or executive routine. 

multiple load module processing: A method of processing 
whereby two or more load modules can be produced in a 
single linkage editor job step. 

*object module: A module that is the output of an assembler 
or compiler and is input to a linkage editor. 

overlay program: A program in which certain control sections 
can use the same storage locations at different times during 
execution. 

*overlay supervisor: A routine that controls the proper 
sequencing and positioning of segments of computer 
programs in limited storage during their exectuion. 

overlay tree: A graphic representation showing the 
relationships of segments of an overlay program and how the 
segments are arranged to use the same main storage area at 
different times. 

Glossary 193 



page: (1) A fixed-length block of instructions, data, or both, 
that can be transferred between real storage and external 
page storage. (2) To transfer instructions, data, or both 
between real storage and external page storage. 

page fault: A program interruption that occurs when a page 
that is marked "not in real storage" is referred to by an active 
page. 

paging: The process of transferring pages between real 
storage and external page storage. 

path: All of the segments in an overlay tree between a given 
segment and the root segment, inclusive. 

private code: An unnamed control section. 

program: A logically self-contained sequence of operations or 
instructions that, when followed in some predetermined 
sequence, will produce a specified result; a sequence of 
instructions to be performed by an electronic computer; one 
or more modules, in source language or relocatable object 
code, or one module in executable code, that are a logically 
self-contained process. 

program fetch: A program that prepares load modules for 
execution by loading them at specific storage locations; it also 
readjusts each address constant. 

pseudo-register: In PL/I, a location in virtual storage that is 
used as a pointer to dynamically acquired virtual storage. It 
enables the PL/I compiler to generate re-enterable code. 
External dummy sections give the programmer using 
Assembler F or Assembler H the same facility. 

real storage: The storage of System/370 from which the 
central processing unit can directly obtain instructions and 
data, and to which it can directly return results. 

re~enterable load module: A module that can be used 
concurrently by more than one task. 

refreshable load module: A load module that cannot be 
modified by itself or by any other module during execution; 
can be replaced by a new copy during execution by a recovery 
management routine without changing either the sequence or 
results of processing. 

region: In an overlay structure, it is a contiguous area of 
virtual storage within which segments can be loaded 
independently of paths in other regions. Only one path within 
a region can be in virtual storage at anyone time. 

relocation: The modification of address constants required to 
compensate for a change of origin of a module, program, or 
control section. 

root segment: That segment of an overlay program that 
remains in virtual storage at all times during the execution of 
the overlay program; the first segment in an overlay program. 

scatter format: A load module attribute that permits the 
programmer or the control program to dynamically load 
control sections into noncontiguous areas of virtual storage. 

segment: The smallest functional unit (one or more control 
sections) that can be loaded as one logical entity during 
execution of an overlay program. 

serially reusable load module: A module that cannot be used by 
a second task until the first task has finished using it. 

source module: The source statements that constitute the 
input to a language translator for a particular translation. 

194 OS/VS Linkage Editor and Loader 

storage block: A 2K block of real storage to which a storage 
key can be assigned. 

upward reference: A reference made from a segment to 
another segment higher in the same path; i.e., closer to the 
root segment. 

vaHd exdusive reference: An exclusive reference in which a 
common segment contains a reference to the symbol used in 
the exclusive reference. 

virtual address: An address that refers to virtual storage and 
must, therefore, be translated into a real storage address 
when it is used. 

virtual storage: Addressable space that appears to the user as 
real storage, from which instructions and data are mapped 
into real storage locations. The size of virtual storage is 
limited by the addressing scheme of the computing system 
and the amount of auxiliary storage available, rather than by 
the actual number of real storage locations. 

weak external reference: An external reference that does not 
have to be resolved during linkage editing. If it is not 
resolved, it appears as though its value was resolved to zero. 

Abbreviated WXTRN. 



INDEX 

$PRIVATE 54 
**GO 172 

A 
A-type address constant 

SEGWT macro instruction 93 
use in replacing control sections 59,153 

AC option 31,101 
adcons (see address constant) 
additional call libraries 40 
additional input sources 

automatic call library 37-41 
general description of 28,33 
included data sets 41-44 
libraries 37-44 
processing of 38-44 
specification of 

automatic call library 39 
INCLUDE statement 43-44 
LIBRARY statement 39,135 

address 
assignment 24 
defined 193 
of main entry point 47 

in module map 54 
address constant 19,21 

(see also A-type, V-type address constant) 
defined 193 
resolution of 22-23 

advanced overlay supervisor 90 
alias 45 
alias name 47 

defined 193 
for the linkage editor 95 
fortheloader 176 
specification of 35 

ALIAS statement 47,125 
alternate output data set (see SYSTERM data set) 
asynchronous overlay supervisor 90 
attributes, module (see module attributes) 
authorization codes (see AC option) 
authorized program facility 31 
automatic call library for linkage editor 37-41 

negating 41,102 
automatic call library for loader 

DD statement for 174 
description of 167 
negating 172 
options 172 

automatic deletion of modules 167,169 
automatic library call mechanism 

defined 193 
noted in module map 54 
(see also automatic call library for linkage editor, loader) 

automatic replacement 59-61 
control sections 60-61 
modules 47 
overlay note 60 

automatic search of link pack area 172 
auxiliary storage 

defined 193 

B 
basic overlay supervisor 90 
blank common area 

collection of 49,87-89 
defined 22,193 
in module map 54 

BLKSIZE subparameter 112-117 
block size 112-117 

DCBS option 108-109 
blocking factors 

SIZE option 107,191 
branch instructions 

in overlay programs 90-92 
buffer, load module (see load module buffer) 
BUFNO, for loader data sets 173 

c 
call library, linkage editor 37 

additional libraries 40 
concatenating 39 
ddname 38 
NCAL option 41 
never-call 41 
restricted no-call 40 
specification of 38-39 

call library, loader 
DD statement for 174-175 
description 167· 
options for use 172 

CALL loader option 172 
CALL macro instruction 91 

to invoke the loader 178 
with only loadable modules 98 

CALL statement 91 
capacities of the linkage editor 163 
cataloged procedure 

defined 118 
for the linkage editor 118 
LKED 118-120 
LKEDG 120-121 
how to add DD statements 122 
how to override 121-122 

CESD (see composite external symbol dictionary) 
CHANGE statement 58-59,64 

summary 126-127 
changing external symbols 58 
class test table 76 
collection of common areas 49,87-89 
common areas 

blank 22 
collection of 49,87-89 
defined 22,193 
in module map 53 
lengthen named 31,129 
named 22 
ordering named 64-65 
reserving storage for 49 

common segment 
defined 90, 193 
in exclusive references 75 
in promotion of common areas 87 

Index 195 



comparison of linkage editor and loader 17,167 
compatibility 

of linkage editor and loader· 169 
composite external symbol dictionary 23-24 

number of entries 163 
concatenation of call libraries 39 
concatenation of input data sets 

linkage editor 44 
restriction 117 

loader 174 
COND parameter 111 
condition parameter, in LKEDG 120 
constant (see address constant) 
control dictionaries 21 
control section 

aligning on page boundary 66 
defined 19,193 
external symbol dictionary 21 
how to delete 63 
how to lengthen 31,129 
how to position 83 
how to replace 59 
in module map 54 
ordering of 64-65 

control section name 
defined 193 
external symbol dictionary 21 
changing 58 

control statements 
continuation of 123 
format conventions 123 
general format 123 
as input 36 
listing 53 
listing option 110 
placement information 124 
summary list 125-127 

cross-reference table 54 
sample 55 

cross-reference table option 109 
CSECT identification records 

function 30-31 

D 

in object and load modules 21 
storage required 164 
use of IDENTIFY 130 

data definition statements (see DO statements) 
data for loaded program 175-176 
data set 

concatenation of 39,44,174-175 
linkage editor 

input 33 
output 45 

loader 174 
DC attribute 96 
DCB information 

linkage editor 112 
loader 173 

DCBS option 108-109 

196 OS/VS Linkage Editor and Loader 

DO statements 
general description 112 
linkage editor data sets 112 

ddnames 113-114 
SYSLIB 40,114 
SYSLIN 114 
SYSLMOD 115 
SYSPRINT 115 
SYSUT1 115 

loader data sets 
ddnames 173,177 
SYSLIB 174 
SYSLIN 174 
SYSLOUT 175 

ddname list 161 
ddnames 

linkage editor 113-114 
specifying alternate names 161 

loader 
automatic call library 174 
diagnostic data set 175 
input data set 174 
specifying alternate names 177 

default module attributes 101 
deleting 

control section 63 
entry name 63 

diagnostic messages 
linkage editor 

directory 51 
format 51-53 

loader 
format 180 

diagnostic output 
linkage editor 50 

messages 50 
optional 45,53-55 
options, summary 30-31 

loader 
data set 175 
format 180 
options 172-173 

dictionaries 
composite external symbol 24,164 
external symbol 21 
relocation 21,22,163 

directory entry, output module 45-47 
disposition messages 50-51 
downward call (see downward reference) 
downward compatible attribute 96 
downward reference 69 

defined 193 
maximum number 163 

E 
editing, module 57-58 
editing conventions 57-58 
end of module indication 23 
END statement 

object module 21 
specifies entry point 47 

ENTAB (entry table) 77-78 
entry address, in module map 54 



entry name 
defined 193 
in ESD 21 

how to change 58 
how to delete 63 
in module map 53 

entry point 47-48 
of loaded program 172 
specification of 

END statement 47 
ENTRY statement 47,128 
EP loader option 172 

ENTR Y statement 47 
summary 128 

entry table 77-78 
EOM (end of module indication) 23 
EP loader option 172 
error condition (see severity code) 
error messages (see diagnostic messages) 
ESD (external symbol dictionary) 21 
exclusive call option 102 
exclusive reference 75 

defined 193 
entry table 78 
restriction 76 
segment table 77 
XCAL option 102 

exclusive segments 74 
defined 193 

EXEC statement 
linkage editor 95 

introduction 95 
job step options 95 
program name 95 
REGION parameter 111 
return code 111 

loader 
description 171-173 
examples 173 

executable module 101 
EXPAND statement 31,129 
external dummy section 

defined 21 
processing of 29,49 
(see also pseudo register) 

external name 19 
defined 193 
(see also control section name; entry name) 

external reference 19 
changing 58 
defined 193 
in ESD 21 
resolving 25,37 
weak 21,28 

with automatic library call 37 
in cross-reference table 54-55 

external symbol 19 
changing 58 
defined 193 

external symbol dictionary 21 

F 
functions 

linkage editor 25-26 
loader 167 

H 
HEWL 95,118 
HEWLOAD 177,180 
HEWLOADR 177, 179 
HIAR attribute 96-97 

I 

how to 
add DD statements to cataloged procedure 122 
change entry names in ESD 58 
delete control sections 63 
delete entry names from ESD 63 
include library members 43 
include members of a partitioned data set 43 
invoke the linkage editor 161 
invoke the loader 176 
override cataloged procedures 121-122 
position control sections 83 
replace control sections 59 
specify alternate ddnames 

linkage editor 161-162 
Loader 176-177 

IDENTIFY macro instruction, as input to loader 170 
IDENTIFY statement summary 130 
IDR (see CSECT identification records) 
IEBUPDTE, input statements 159 
INCLUDE statement 41 

summary 132 
included data sets 41 

concatenated data sets 44 
library members 43 
sequential data sets 43 

inclusive reference 75 
defined 193 

inclusive segments 74 
defined 193 

incompatible job step options 110 
incompatible module attributes 101 
input data sets 

linkage editor 33 
type of data 33 

loader 174 
input processing 33 
input sources 

linkage editor 23 
loader 169,174 

INSERT statement 84 
summary 133 

intermediate data set 
linkage editor 

ddname 114 
description 23,163 
devices supported 165 
use of SIZE option 102 

when used 163 
loader 169 

intermediate text records 
number produced 163 

internal data area 170 
invalid attributes or options 50 
invalid exclusive reference 75 

defined 193 
invocation of 

linkage editor 161 
loader 176 



J 
job control language summary 95-122 
job control statements 

linkage editor 95 
loader processing 

basic format 171 
compile-load job 183 
load job 183 
multiple compilations 184 

job step options, on EXEC statement 95 

L 
. let execute option 102 
LET option 

for the linkage editor 101- 102 
fortheloader 169,172 
for overlay programs 86 

library, defined 193 
library call (see automatic call library for linkage editor, 

loader; call library) 
library members 

how to include 43 
as input to the linkage editor 33 
as input to the loader 174 

LIBRARY statement 39 
additional call libraries 40 
with NCAL 102 
never-call function 41 
restricted no-call function 40 
summary 135 

LINK command 
function of 32 

LINK macro instruction 
to invoke the linkage editor 161 
to invoke the loader 176 

link pack area resolution by the loader 172 
linkage editor 

cataloged procedures 118-121 
compared to loader 17, 167 
control statement summary 123 
D D statements 113-117 
functions 25-26 
input 33 
how to invoke 161 
output 45 
processing 23 
relationship to operating system 32 
storage requirements 163 
when to use 17 

LINKEDIT 95 
linking modules 26 
LIST option 53,109 
LKED procedure 118-120 
LKEDG 120-121 
LOAD macro instruction 

to invoke the loader 176 
with only loadable modules 98 

198 OS/VS Linkage Editor and Loader 

load module 
attributes 96 
buffer 103 
defined 19, 193 
entry point 47 
as input 

to the linkage editor 33 
to the loader 169 

as linkage editor output 45 
multiple processing of 49 
structure 21 

load module attribute assignment 
summary 30 

load module buffer 103 
defined 193 

load module creation 23 
load point 74,81 
load step 17,167 
loaded program 

data 175-176 
in module map 181 
options 171-172 
restrictions 170 
return code 185 

loader 
abnormal termination message (VS2) 181 
alias name 176 
compared to linkage editor 17, 169 
compatibility with linkage editor 169 
data sets 173 
input 167, 169 
invocation of 176 
options 171-172 
output 180 
program name 172 
restrictions on use 169 
return code 185 

LOAD GO command 
function of 169 

loading 
with identification 180 
without identification 179 

logical record length 
linkage editor data sets 

blocking factors 113 
diagnostic output 115 
input 114 

SIZE option 102 
LRECL 112-113 

(see also logical record length) 

M 
macro instruction, basic format 161 
MAP option 

linkage editor 53-54,109 
loader 169, 172 

maximum record size for device types 103-104 
member, partitioned data set 

how to include 43 
as input to the linkage editor 34 
asinputtotheloader 174 

member name 46-47 
defined 45 



messages 
disposition 50-51 
examples 53 
format 52 
text 52 
unnumbered 51 

modular programming 19 
module, defined 19, 193 

(see also load module; module-attributes; object module) 
module attributes 96 

default attributes 101 
downward compatible 96 
hierarchy format 96 
incompatible attributes 101,110 
not editable 98 
not executable 101 
only loadable 98 
overlay 98 
refreshable 100 
reusability 

re-enterable 99 
serially reusable 99 

scatter format 97 
test 100 

module disposition messages 50 
module editing 57 

summary 27 
module linking 26-27 
module map 

linkage editor 
description 53-54 
example 54 
MAP option 109 

loader 
description 180 
example 181 
specification 172 

module map option 109 
multiple load module processing 49 

defined 193 
multiple region overlay program 78 

specification 82 

N 
Name option 172 
NAME statement 46 

in multiple load module processing 47-49 
replace function 47 
summary 137 
with SYSLMOD DD 46 

named common area 
aligning on page boundary 66 
collection of 49,87 
defined 22 
in module map 53 

NCALoption 
linkage editor 41,102 
loader 169, 172 

NE attribute 98 

negation of 
automatic library call 

linkage editor 41 
loader 172 

loader 
diagnostic output 172 
module map 172 
search of link pack area 172 

not editable attribute 98 
not executable attribute 101 
re-enterable attribute 99 
refreshable attribute 100 
serially reusable 99 

never-call function 41 
in cross-reference table 55 

no automatic library call option 102 
no-call 41 
NOCALL loader option 172 
node point (see load point) 
NOLET loader option 169, 172 
NOMAP loader option 172 
NOPRINT loader option 172 
NORES loader option 172 
NOTERM loader option 172 
not editable attribute 

linkage editor 98 
loader 169 

not executable attribute 101 

o 
object module 

defined 19, 193 
input to linkage editor 33 

with control statements 36 
input to the loader 173 
structure 21 
in virtual storage 170 

OL attribute 98 
only loadable attribute 98 
optional output 53 
options, incompatible 110 
options, linkage editor 

module attributes 96 
output 110 
space allocation 102 
special processing 101-102 

ORDER statement 64-65,138 
origin 

of control section in module map 53 
of region 82 
of segments 74 

output of linkage editor 
diagnostic messages 50 
load module 45 
optional output 53-55 
output module library 45 
output options 109 

output of the loader 
messages 180 
module map 181 
specification of 171-173 

output module library 45 
output text record length 163 
overlap of loading and processing of 

overlay segments 92 

Index 199 



overlay attribute 98 
with hierarchy attribute 96 

overlay program 
communication 90 
defined 193 
design 69 
module map 53 
multiple region 78 
process 76-78 
region origin 82 
respecifying control statements 81 
sample program 153-155,159-160 
segment origin 74,81 
single region 70 
special considerations 87 
specification 80 
storage requirements 89-90 

OVERLAY statement 80-86 
summary 140 

overlay supervisor 77 
defined 193 
storage requirements 165 

overlay tree 70,72 
defined 194 

overriding cataloged procedures 
EXEC statement 121 
D D statements 121-122 

OVL Y attribute 98-99 

p 
page boundary 

aligning control sections or named common areas 66 
attribute 100 

PAGE statement 
aligning control sections 66 
summary 142 

partitioned data set 
as input 

to linkage editor 34 
to loader 174 

as output of linkage editor 45 
SIZE option 107 -108 

path, in overlay programs 69 
defined 194 

placement of control statements 124 
positioning control sections 83 
preloaded text 170,181 
primary input data set 33 

control statements 36 
object modules 33,36 

PRINT loader option 172 
private call libraries 39 
private code 

defined 22,194 
in module map 54 

procedure LKED 118-120 
procedure LKEDG 120-121 

. processing history, tracing 30-31 
defined 194 

program fetch 
defined 194 
functions 24 

prompter, linkage editor 
function of 32 

prompter, loader 
function of 169 

200 OS/VS Linkage Editor and Loader 

pseudo register 
defined 22, 194 

R 

in module map 54 
processing of 29,49 

real storage requirements 165 
RECFM (see record format) 
record format (RECFM) 112,114 

linkage editor data sets 
diagnostic output 117 
input 112-113 
load modules 115-117 

loader data sets 173 
record size, maximum for device type 103-104 
re-enterable attribute 99 
re-enterable load module 

defined 194 
module attribute 99 

REFR attribute 100 
refreshable attribute 100 
refreshable load module 

defined 194 
module attribute 101 

region, in overlay programs 78,82 
defined 194 

region, virtual storage 
for linkage editor 

cataloged procedures 118 
requirements 165 
with SIZE option 107-108,110-111 

for loader 178 
relocating a load module 19 
relocation 

defined 194 
relocation dictionary 22-23 

number of entries 163 
RENT attribute 99 
replace function 47,59-61 
REPLACE statement 62-65 

sample program 151-153 
summary 144-145 

replacing control sections 60-61 
assembler language note 59 

replacing external symbols (seeCHANGE statement; 
changing external symbols) 

replacing load modules with the same name 45 
repositioning control statements 83 

from automatic call library 85 
INSERT statement 133 

reprocessing load modules 
compatibility 96 
entry point assignment 48 
not editable attribute 98 

RES loader option 172 
reserving storage 49 
resolving external references 25,37 
restricted no-call function 40 
restrictions, loaded program 170 
return code 

linkage editor III 
loader 185 

testing 185 
severity code 52 

REUS attribute 99 



reusability attributes 99 
re-enterable 99 
serially reusable 99 

RLD (see relocation dictionary) 
root segments 69 

s 

defined 194 
with OVERLAY 81 
and segment table 77 

sample programs 149 
scatter format attribute 

defined 194 
scatter loading 97 
SCTR attribute 97 
SEGLD macro instruction 90 
segment 

communication 74-76 
defined 194 
dependency 72 
origin 74 
(see also exclusive, inclusive, root segments) 

segment load macro instruction 92-93 
segment table 77 
segment wait macro instruction 93 

with SEGLD 93 
SEGT AB (segment table) 77 
SEGWT macro instruction 93 

with SEGLD 93 
sequential data set 

as input to the linkage editor 33,43 
as input to the loader 174 
with INCLUDE statement 43 

serially reusable 
attribute 99 
defined 194 

SETCODE statement 31,146 
SETSSI statement 147 
severity code 

linkase editor messages 52 
return code 111 

severity 0, 2 errors 52 
SIZE option 

linkage editor 107,191 
loade.r 

description 169,172,187 
source module 

defined 194 
space allocation options 102 

DCBS option 108-109 
maximum values 104-105,107 
minimum values 104-105,107 
SIZE option 103 

special processing options 101 
summary 30 

static external areas 49 
storage requirements (see also real storage requirements; 

virtual storage requirements) 
SYSLIN DD statement 

for the linkage editor 114 
(see also automatic call library) 

fortheloader 174 
SYSLIN DD statement 

for the linkage editor 114 
(see also primary input data set) 

for the loader 174 

SYSLMOD DD statement 115 
(see also output module library) 
NAME statement 49-50 

SYSLOUT DD statement 171, 175 
SYSPRINT DD statement 115 

(see also diagnostic output) 
system call library 38 

list of 38 
system status index information 

storage of 30 
SYSTERM data set 

linkage editor 52,109,116 
loader 173, 175, 180 

SYSTERM DD statement 
linkage editor 52,109,116 
loader 173, 175, 180 

SYSUTI DD statement 115 
(see also intermediate data set) 

T 
TERMPNAME 46 
temporary data set 35,45 
TERM option 

linkage editor 52,109,116 
loader 173 

TEST attribute 100 
text 21 
text, message 52 
time sharing option (see TSO) 
tracing processing history 30-31 
TRANSFORM table 76 
tree structure 70,72 

overlay tree, defined 194 
TSO (time sharing option) 

linkage editor 32 
SYSTERM data set 109,116 
TERM option 52 

loader 169 
SYSTERM data set 173,175,180 
TERM option 172 

TXT 25,189 

u 
unnumbered messages 50-51 
unresolved references 

automatic library call, resolving with 37 
in cross-reference table 55 

upward reference 69 
defined 194 

user-specified 
input 23 
storage 30 

user-written library (see private call libraries) 

v 
V-type address constant 

branch instruction, overlay 91 
with CALL 91 
with SEGLD 92 
with SEGWT 93 

valid exclusive reference 75 
defined 194 

Index 201 



virtual storage requirements 163 
linkage editor 165 
loader 187 
overlay programs 89-90 

w 
wait for loading of segment 93 
warning messages 51-52 
weak external reference 28 

x 

with automatic library call 37 
in cross-reference table 55 
defined 21, 194 

XCAL option 101 
XCTL macro instruction 

asinputtotheloader 169 
to invoke the loader 176 

XREF option 109 
(see also cross-reference table) 

202 OS/VS Linkage Editor and Loader 





GC26-3813.-5 



! o 
Z 

OS/VS Linkage Editor and Loader 

GC26·3813·5 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the 
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in 
'your own language; use of English is not required. 
. IB~ may use or distribute any of the information you supply in any way it believes appropriate without 
mcurrmg any obligation whatever. You may, of course, continue to use the information you supply. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct 
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative 
or to the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

ustTNL ______________ __ 

Previous TNL _______ _ 

Previous TNL _______ __ 

Fold on two Hnes, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 



GC26·3813·5 

Reader's Comment Form 

Fold and Tape ................................................................. ., ............................................................................ . 

11111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

ARMONK, N.Y. 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

t ................................................................................................................................................... .. 

Fold and Tape 

==-=. .==:® - ------ ----- -- --- -- ----- - - ------ - - ------------- ---~ _.-



OS/VS Linkage Editor and Loader 

GC26-3813-5 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the 
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in 
your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation whatever. You may, of course, continue to use the information you supply. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct 
any requests for copies of publications, or for assistance in using your IBM system. to your IBM representative 
or to the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL _______ _ 

Previous TNL ______ _ 

Previous TNL ______ _ 

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your commeqts.) Thank you for your 
cooperation. 



GC26-3813-5 

Reader's Comment Form 

Fold and Tape 
•••••••••••••• tI: .............................................................................................................................. : 

III " I 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 

POSTAGE WILL BE PAID BY ADDRESSEE: 

IBM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

ARMONK, N.Y. 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

............................................................................................................................................ 
Fold and Tape 

====-=- .=® - - - --- ----- ---- -~-- - ---- - - ---- - - ---------------_.-

. 

. 
~ 
u 
c 


